Review of Last Time

- |= means “logically follows”
- | means “can be derived from”
- If your inference algorithm derives only things that follow logically from the KB, the inference is sound
- If everything that follows logically from the KB can be derived using your inference algorithm, the inference is complete

Outline

1. Propositional Logic: Syntax and Semantics
2. Reasoning Patterns in Propositional Logic

Propositional Logic: Syntax and Semantics

Syntax: Backus-Naur Form grammar of sentences in propositional logic

Sentence → AtomicSentence | ComplexSentence
AtomicSentence → True | False | Symbol
Symbol → P | Q | R | …
ComplexSentence → ¬ Sentence
 | (Sentence ∧ Sentence)
 | (Sentence ∨ Sentence)
 | (Sentence → Sentence)
 | (Sentence ↔ Sentence)

Atomic Sentences

- The indivisible syntactic elements
- Consist of a single propositional symbol e.g. P, Q, R that stands for a proposition that can be true or false e.g. P=true, Q=false
- We also call an atomic sentence a literal
- 2 special propositional symbols:
 - True (the always true proposition)
 - False (the always false proposition)
Complex Sentences

- Made up of sentences (either complex or atomic)
- 5 common logical connectives:
 - ¬ (not): negates a literal
 - ∧ (and): conjunction e.g. P ∧ Q where P and Q are called the conjuncts
 - ∨ (or): disjunction e.g. P ∨ Q where P and Q are called the disjuncts
 - ⇒ (implies): e.g. P ⇒ Q where P is the premise/antecedent and Q is the conclusion/consequent
 - ⇔ (if and only if): e.g. P ⇔ Q is a biconditional

Precedence of Connectives

- In order of precedence, from highest to lowest: ¬, ∧, ∨, ⇒, ⇔
- E.g. ¬P ∨ Q ∧ R ⇒ S is equivalent to ((¬P) ∨ (Q ∧ R)) ⇒ S
- You can rely on the precedence of the connectives or use parentheses to make the order explicit
- Parentheses are necessary if the meaning is ambiguous

Semantics (Are sentences true?)

- Defines the rules for determining if a sentence is true with respect to a particular model
- For example, suppose we have the following model: P=true, Q=false, R=true
- Is (P ∧ Q ∧ R) true?

I want the truth!

Note on implication

- P ⇒ Q seems weird…doesn’t fit intuitive understanding of “if P then Q”
- Propositional logic does not require causation or relevance between P and Q
- Implication is true whenever the antecedent is false (remember P ⇒ Q can be translated as ¬P ∨ Q)
- Implication says “if P is true, then I am claiming that Q is true. Otherwise I am making no claim.”
- The only way for this to be false is if P is true but Q is false

Semantics

For atomic sentences:
- True is true, False is false
- A symbol has its value specified in the model

For complex sentences (for any sentence S and model m):
- ¬S is true in m iff S is false in m
- S₁ ∧ S₂ is true in m iff S₁ is true in m and S₂ is true in m
- S₁ ∨ S₂ is true in m iff S₁ is true in m or S₂ is true in m
- S₁ ⇒ S₂ is true in m iff S₁ is false in m or S₂ is true in m
 i.e., can translate it as ¬S₁ ∨ S₂
- S₁ ⇔ S₂ is true iff S₁⇒S₂ is true in m and S₂⇒S₁ is true in m

Semantics (Are sentences true?)

- Defines the rules for determining if a sentence is true with respect to a particular model
- For example, suppose we have the following model: P=true, Q=false, R=true
- Is (P ∧ Q ∧ R) true?

I want the truth!

Note on implication

- P ⇒ Q seems weird…doesn’t fit intuitive understanding of “if P then Q”
- Propositional logic does not require causation or relevance between P and Q
- Implication is true whenever the antecedent is false (remember P ⇒ Q can be translated as ¬P ∨ Q)
- Implication says “if P is true, then I am claiming that Q is true. Otherwise I am making no claim.”
- The only way for this to be false is if P is true but Q is false

Semantics

For atomic sentences:
- True is true, False is false
- A symbol has its value specified in the model

For complex sentences (for any sentence S and model m):
- ¬S is true in m iff S is false in m
- S₁ ∧ S₂ is true in m iff S₁ is true in m and S₂ is true in m
- S₁ ∨ S₂ is true in m iff S₁ is true in m or S₂ is true in m
- S₁ ⇒ S₂ is true in m iff S₁ is false in m or S₂ is true in m
 i.e., can translate it as ¬S₁ ∨ S₂
- S₁ ⇔ S₂ is true iff S₁⇒S₂ is true in m and S₂⇒S₁ is true in m

Semantics

For atomic sentences:
- True is true, False is false
- A symbol has its value specified in the model

For complex sentences (for any sentence S and model m):
- ¬S is true in m iff S is false in m
- S₁ ∧ S₂ is true in m iff S₁ is true in m and S₂ is true in m
- S₁ ∨ S₂ is true in m iff S₁ is true in m or S₂ is true in m
- S₁ ⇒ S₂ is true in m iff S₁ is false in m or S₂ is true in m
 i.e., can translate it as ¬S₁ ∨ S₂
- S₁ ⇔ S₂ is true iff S₁⇒S₂ is true in m and S₂⇒S₁ is true in m

Truth Tables for the Connectives

<table>
<thead>
<tr>
<th>P</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

With the truth tables, we can compute the truth value of any sentence with a recursive evaluation e.g.

Suppose the model is P=false, Q=false, R=true
¬P ∧ (Q ∨ R) = true ∧ (false ∨ true) = true ∧ true = true
The Wumpus World KB (only dealing with knowledge about pits)

For each i, j:
Let $P_{i,j}$ be true if there is a pit in $[i, j]$
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$

The KB contains the following sentences:
1. There is no pit in $[1, 1]$:
 $R_1: \neg P_{1,1}$
2. A square is breezy iff there is a pit in a neighboring square: (not all sentences are shown)
 $R_2: B_{1,1} \iff P_{1,2} \lor P_{2,1}$
 $R_3: B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

3. We add the percepts for the first two squares ($[1, 1]$ and $[2, 1]$) visited in the Wumpus World example:
 $R_4: \neg B_{1,1}$
 $R_5: B_{2,1}$

The KB is now a conjunction of sentences $R_1 \land R_2 \land R_3 \land R_4 \land R_5$ because all of these sentences are asserted to be true.

Inference

• How do we decide if $KB \models \alpha$?
• Enumerate the models, check that α is true in every model in which KB is true

Complexity

• If the KB and α contain n symbols in total, what is the time complexity of the truth table enumeration algorithm?
• Space complexity is $O(n)$ because the actual algorithm uses DFS

The really depressing news

• Every known inference algorithm for propositional logic has a **worse-case** complexity that is **exponential** in the size of the input

• But some algorithms are more efficient in practice

You can’t handle the truth!
Logical equivalence

• Intuitively: two sentences α and β are logically equivalent (i.e. $\alpha \equiv \beta$) if they are true in the same set of models
• Formally: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
• Can prove this with truth tables

Standard Logic Equivalences

$\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) & \text{associativity of } \lor \\
\neg\neg\alpha & \equiv \alpha & \text{double-negation elimination} \\
(\alpha \rightarrow \beta) & \equiv (\neg\beta \rightarrow \neg\alpha) & \text{contraposition} \\
(\alpha \rightarrow \beta) & \equiv (\neg\alpha \lor \beta) & \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv ((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)) & \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) & \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) & \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv (\alpha \land (\beta \lor \gamma)) & \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{distributivity of } \lor \text{ over } \land
\end{align*}$

In the above, $\alpha, \beta,$ and γ are arbitrary sentences of propositional logic

Validity

• A sentence is valid if it is true in all models
• E.g. $P \lor \neg P$ is valid
• Valid sentences = Tautologies
• Tautologies are vacuous

Deduction theorem
For any sentences α and β, $\alpha \models \beta$ iff the sentence ($\alpha \Rightarrow \beta$) is valid

Satisfiability

• A sentence is satisfiable if it is true in some model.
• A sentence is unsatisfiable if it is true in no models
• Determining the satisfiability of sentences in propositional logic was the first problem proved to be NP-complete
• Satisfiability is connected to validity: α is valid iff $\neg\alpha$ is unsatisfiable
• Satisfiability is connected to entailment: $\alpha \models \beta$ iff the sentence ($\alpha \land \neg\beta$) is unsatisfiable (proof by contradiction)

Reasoning Patterns in Propositional Logic

Proof methods

How do we prove that α can be entailed from the KB?
1. Model checking e.g. check that α is true in all models in which KB is true
2. Inference rules
Inference Rules

1. Modus Ponens
 \[\alpha \Rightarrow \beta, \quad \alpha \quad \beta \]

2. And-Elimination
 \[\alpha \land \beta \quad \alpha \]

These are both sound inference rules. You don’t need to enumerate models now.

Other Inference Rules

\[
\begin{align*}
\langle \alpha \land \beta \rangle & \equiv \langle \beta \land \alpha \rangle \quad \text{commutativity of } \land \\
\langle \alpha \lor \beta \rangle & \equiv \langle \beta \lor \alpha \rangle \quad \text{commutativity of } \lor \\
\langle \alpha \land (\beta \land \gamma) \rangle & \equiv \langle (\alpha \land \beta) \land \gamma \rangle \quad \text{associativity of } \land \\
\langle \alpha \lor (\beta \lor \gamma) \rangle & \equiv \langle (\alpha \lor \beta) \lor \gamma \rangle \quad \text{associativity of } \lor \\
\neg (\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv (\langle \alpha \Rightarrow \beta \rangle \land \langle \beta \Rightarrow \alpha \rangle) \quad \text{biconditional elimination} \\
\neg (\alpha \land \beta) & \equiv \neg (\alpha \lor \neg \beta) \quad \text{de Morgan} \\
\neg (\alpha \lor \beta) & \equiv \neg (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\
\langle \alpha \land (\beta \lor \gamma) \rangle & \equiv \langle (\alpha \land \beta) \lor (\alpha \land \gamma) \rangle \quad \text{distributivity of } \land \text{ over } \lor \\
\langle \alpha \lor (\beta \land \gamma) \rangle & \equiv \langle (\alpha \lor \beta) \land (\alpha \lor \gamma) \rangle \quad \text{distributivity of } \lor \text{ over } \land \\
\end{align*}
\]

All of the logical equivalences can be turned into inference rules e.g.
\[
\langle \alpha \Rightarrow \beta \rangle \land \langle \beta \Rightarrow \alpha \rangle
\]

Example

Given the following KB, can we prove \(\neg R \)?

KB:
\[P \Rightarrow \neg (Q \lor R) \]

Proof:
\[\neg (Q \lor R) \text{ by Modus Ponens} \]
\[\neg Q \land \neg R \text{ by De Morgan’s Law} \]
\[\neg R \text{ by And-Elimination} \]

Proofs

- A sequence of applications of inference rules is called a proof
- Instead of enumerating models, we can search for proofs
- Proofs ignore irrelevant propositions
- 2 methods:
 - Go forward from initial KB, applying inference rules to get to the goal sentence
 - Go backward from goal sentence to get to the KB

Monotonicity

- Proofs only work because of monotonicity
- Monotonicity: the set of entailed sentences can only increase as information is added to the knowledge base
- For any sentences \(\alpha \) and \(\beta \), if \(\text{KB} \models \alpha \) then \(\text{KB} \land \beta \models \alpha \)

Resolution

- An inference rule that is sound and complete
- Forms the basis for a family of complete inference procedures
- Here, complete means refutation completeness: resolution can refute or confirm the truth of any sentence with respect to the KB
Resolution

- Here’s how resolution works (\(\neg l_2\) and \(l_2\) are called complementary literals):
 \[
 l_1 \lor l_2, \quad \neg l_1 \lor l_2
 \]
- Note that you need to remove multiple copies of literals (called factoring) i.e.
 \[
 l_1 \lor l_2, \quad \neg l_1 \lor l_2
 \]
- If \(l_1\) and \(m_1\) are complementary literals, the full resolution rule looks like:
 \[
 l_1 \lor \cdots \lor l_{i-1} \lor l_i \lor m_1 \lor \cdots \lor m_{i-1} \lor m_i \lor \cdots \lor m_n
 \]

Conjunctive Normal Form

- Resolution only applies to sentences of the form \(l_1 \lor l_2 \lor \ldots \lor l_k\)
- This is called a disjunction of literals
- It turns out that every sentence of propositional logic is logically equivalent to a conjunction of disjunction of literals
- Called Conjunctive Normal Form or CNF
 e.g. \((l_1 \lor l_2 \lor l_1 \lor l_2) \land (l_5 \lor l_6 \lor l_7 \lor l_8) \land \ldots\)
- \(k\)-CNF sentences have exactly \(k\) literals per clause
 e.g. A 3-CNF sentence would be \((l_1 \lor l_2 \lor l_3) \land (l_4 \lor l_5 \lor l_6) \land (l_7 \lor l_8 \lor l_9)\)

Recipe for Converting to CNF

1. Eliminate \(\leftrightarrow\), replacing \(\alpha \leftrightarrow \beta\) with \((\alpha \implies \beta) \land (\beta \implies \alpha)\)
2. Eliminate \(\implies\), replacing \(\alpha \implies \beta\) with \(\neg \alpha \lor \beta\)
3. Move \(\neg\) inwards using:
 - \(\neg(\neg \alpha) = \alpha\) (double-negation elimination)
 - \(\neg(\alpha \land \beta) = \neg \alpha \lor \neg \beta\) (De Morgan’s Law)
 - \(\neg(\alpha \lor \beta) = \neg \alpha \land \neg \beta\) (De Morgan’s Law)
4. Apply distributive law \((\alpha \lor (\beta \land \gamma)) = ((\alpha \lor \beta) \land (\alpha \lor \gamma))\)

A resolution algorithm

To prove \(KB \models \alpha\), we show that \((KB \land \neg \alpha)\) is unsatisfiable
(remember that \(\alpha \models \beta\) iff the sentence \((\alpha \land \neg \beta)\) is unsatisfiable)

The algorithm:
1. Convert \((KB \land \neg \alpha)\) to CNF
2. Apply resolution rule to resulting clauses. Each pair with complementary literals is resolved to produce a new clause which is added to the KB
3. Keep going until
 - There are no new clauses that can be added (meaning \(KB \models \alpha\))
 - Two clauses resolve to yield the empty clause (meaning \(KB \models \alpha\))

The empty clause is equivalent to false because a disjunction is true only if one of its disjuncts is true

Resolution Pseudocode

```plaintext
Function PL-RESOLUTION(KB, \alpha) returns true or false
  clauses ← the set of clauses in the CNF representation of KB \land \neg \alpha
  new ← {} loop do
    for each \(C_i, C_j\) in clauses do
      if \(\text{resolvents} = \text{PL-RESOLVE}(C_i, C_j)\)
        if \(\text{resolvents}\) contain the empty clause then return true
        new ← new ∪ resolvents
    if \(new \subseteq \text{clauses}\) then return false
    clauses ← clauses ∪ new
  end loop
end function
```

Things you should know

- Understand the syntax and semantics of propositional logic
- Know how to do a proof in propositional logic using inference rules
- Know how resolution works
- Know how to convert arbitrary sentences to CNF
In-class Exercise

Can we show that:

\[
\text{KB} \models (\text{Socrates} \Rightarrow \text{Mortal})?
\]

<table>
<thead>
<tr>
<th>KB</th>
<th>Person \Rightarrow \text{Mortal}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Socrates \Rightarrow \text{Person}</td>
</tr>
</tbody>
</table>

In-class Exercise

<table>
<thead>
<tr>
<th>If it is October, there will not be a football game at OSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>If it is October and it is Saturday, I will be in Corvallis</td>
</tr>
<tr>
<td>If it doesn’t rain or if there is a football game, I will ride my bike to OSU</td>
</tr>
<tr>
<td>Today is Saturday and it is October</td>
</tr>
<tr>
<td>If I am in Corvallis, it will not rain</td>
</tr>
</tbody>
</table>

Can you prove that I will ride my bike to OSU?