CS 331: Artificial Intelligence
Uninformed Search

Real World Search Problems
Simpler Search Problems

Assumptions About Our Environment

- Static
- Observable
- Discrete
- Deterministic
- Single-agent
Search Problem Formulation

A search problem has 5 components:
1. A finite set of states S
2. A non-empty set of initial states $I \subseteq S$
3. A non-empty set of goal states $G \subseteq S$
4. A successor function $\text{succ}(s)$ which takes a state s as input and returns as output the set of states you can reach from state s in one step.
5. A cost function $\text{cost}(s,s')$ which returns the non-negative one-step cost of travelling from state s to s'. The cost function is only defined if s' is a successor state of s.

Example: Oregon

Initial State

Goal State

$S = \{\text{Coos Bay, Newport, Corvallis, Junction City, Eugene, Medford, Albany, Lebanon, Salem, Portland, McMinnville}\}$

$I = \{\text{Corvallis}\}$

$G = \{\text{Medford}\}$

$\text{Succ}(\text{Corvallis}) = \{\text{Albany, Newport, McMinnville, Junction City}\}$

$\text{Cost}(s,s') = 1$ for all transitions
Results of a Search Problem

- Solution
 Path from initial state to goal state

- Solution quality
 Path cost (3 in this case)

- Optimal solution
 Lowest path cost among all solutions (In this case, we found the optimal solution)

Search Tree

Start with Initial State
Search Tree

Is initial state the goal?
- Yes, return solution
- No, apply Successor() function

Search Tree

These nodes have not been expanded yet. Call them the fringe. We'll put them in a queue.

Apply Successor() function

Queue

- McMinnville
- Albany
- Junction City
- Newport
Now remove a node from the queue. If it’s a goal state, return the solution. Otherwise, call Successor() on it, and put the results in the queue. Repeat.

Things to note:
- Order in which you expand nodes (in this example, we took the first node in the queue)
- Avoid repeated states
Tree-Search Pseudocode

function Tree-Search(problem, fringe) returns a solution, or failure
fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-Test(problem)[State[node]] then return SOLUTION(node)
 fringe ← InsertAll(Expand(node, problem), fringe)
end loop

function Expand(node, problem) returns a set of nodes
successors ← the empty set
for each action, result in SUCCESSOR-Fn(problem)[State[node]] do
 s ← a new NODE
 Parent-Node[s] ← node, Action[s] ← action, State[s] ← result
 Path-Cost[s] ← Path-Cost[node] + Step-Cost(node, action, s)
 Depth[s] ← Depth[node] + 1
 add s to successors
return successors

Note: Goal test happens after we grab a node off the queue.
Tree-Search Pseudocode

```java
function Tree-Search(problem, fringe) returns a solution, or failure
fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
loop do
    if fringe is empty then return failure
    node ← fringe.Pop()
    if Goal-Test(node) then return node
    fringe ← f(NODE, fringe)
end loop
```

Why are these parent node backpointers important?

```java
function Expand(node, problem) returns a set of nodes
successors ← the empty set
for each action, result in SUCCESSOR-Fn(problem)(State[node]) do
    s ← a new NODE
    Parent-[NODE][s] ← node; Action[s] ← action; State[s] ← result
    Path-Cost[s] ← Path-Cost[node] + Step-Cost(node, action, s)
    Depth[s] ← Depth[node] + 1
    add s to successors
return successors
```

Uninformed Search

- No info about states other than generating successors and recognizing goal states
- Later on we’ll talk about informed search – can tell if a non-goal state is more promising than another
Evaluating Uninformed Search

- Completeness
 Is the algorithm guaranteed to find a solution when there is one?
- Optimality
 Does it find the optimal solution?
- Time complexity
 How long does it take to find a solution?
- Space complexity
 How much memory is needed to perform the search

Complexity

1. Branching factor (b) – maximum number of successors of any node
2. Depth (d) of the shallowest goal node
3. Maximum length (m) of any path in the search space

Time Complexity: number of nodes generated during search
Space Complexity: maximum number of nodes stored in memory
Uninformed Search Algorithms

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative Deepening Depth-first Search
- Bidirectional search

Breadth-First Search

- Expand all nodes at a given depth before any nodes at the next level are expanded
- Implement with a FIFO queue
Breadth First Search Example

Not yet reached
On fringe but unexpanded
Expanded nodes on current path
Current node to be expanded
Evaluating BFS

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if step costs are identical</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b) = O(b^{d+1})$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^{d+1})$</td>
</tr>
</tbody>
</table>

Exponential time and space complexity make BFS impractical for all but the smallest problems.
Uniform-cost Search

- What if step costs are not equal?
- Recall that BFS expands the shallowest node
- Now we expand the node with the lowest path cost
- Uses priority queues

Note: Gets stuck if there is a zero-cost action leading back to the same state.
For completeness and optimality, we require the cost of every step to be $\geq \varepsilon$.

Evaluating Uniform-cost Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite and step costs $\geq \varepsilon$ for small positive ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^{1+\text{floor}(C*/\varepsilon)})$ where $C*$ is the cost of the optimal solution</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^{1+\text{floor}(C*/\varepsilon)})$ where $C*$ is the cost of the optimal solution</td>
</tr>
</tbody>
</table>
Depth-first Search

• Expands the deepest node in the current fringe of the search tree
• Implemented with a LIFO queue

Depth-first Search Example
Depth-first Search Example

Evaluating Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
</tr>
<tr>
<td>Time Complexity</td>
</tr>
<tr>
<td>Space Complexity</td>
</tr>
</tbody>
</table>
Evaluating Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>No (Might not terminate if it goes down an infinite path with no solutions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>No (Could expand a much longer path than the optimal one first)</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(bm)$</td>
</tr>
</tbody>
</table>

Depth-limited Search

- Solves infinite path problem by using predetermined depth limit l
- Nodes at depth l are treated as if they have no successors
- Can use knowledge of the problem to determine l (but in general you don’t know this in advance)
Evaluating Depth-limited Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>No (If shallowest goal node beyond depth limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^l)$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^l)$</td>
</tr>
</tbody>
</table>

Iterative Deepening Depth-first Search

- Do DFS with depth limit 0, 1, 2, … until a goal is found
- Combines benefits of both DFS and BFS
Iterative Deepening Depth-first Search Example

Limit = 0

Limit = 1

Limit = 2

IDDFS Example

Limit = 3
IDDFS Example

Limit = 3 (Continued)

Evaluating Iterative Deepening Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td></td>
</tr>
<tr>
<td>Time Complexity</td>
<td></td>
</tr>
<tr>
<td>Space Complexity</td>
<td></td>
</tr>
</tbody>
</table>
Evaluating Iterative Deepening Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if the path cost is a nondecreasing function of the depth of the node</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(bd)$</td>
</tr>
</tbody>
</table>

Isn’t Iterative Deepening Wasteful?

- Actually, no! Most of the nodes are at the bottom level, doesn’t matter that upper levels are generated multiple times.
- To see this, add up the 4th column below:

<table>
<thead>
<tr>
<th>Depth</th>
<th># of nodes</th>
<th># of times generated</th>
<th>Total # of nodes generated at depth d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>d</td>
<td>$(d)b$</td>
</tr>
<tr>
<td>2</td>
<td>b^2</td>
<td>$d-1$</td>
<td>$(d-1)b^2$</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>d</td>
<td>b^d</td>
<td>1</td>
<td>$(1)b^d$</td>
</tr>
</tbody>
</table>
Is Iterative Deepening Wasteful?

Total # of nodes generated by iterative deepening:
\[(d)b + (d-1)b^2 + \ldots + (1)b^d = O(b^d)\]

Total # of nodes generated by BFS:
\[b + b^2 + \ldots + b^d + (b^{d+1} - b) = O(b^{d+1})\]

In general, iterative deepening is the preferred uninformed search method when there is a large search space and the depth of the solution is not known.

Bidirectional Search

- Run one search forward from the initial state
- Run another search backward from the goal
- Stop when the two searches meet in the middle
Bidirectional Search

- Needs an efficiently computable Predecessor() function
- What if there are several goal states?
 - Create a new dummy goal state whose predecessors are the actual goal states
- Problematic if no efficient way to generate the set of all goal states and check for them in the forward search eg. “All states that lead to checkmate by move m_1”

Evaluating Bidirectional Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite and both directions use BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if the step costs are all identical and both directions use BFS</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^{d/2})$ (At least one search tree must be kept in memory for the membership check)</td>
</tr>
</tbody>
</table>
Avoiding Repeated States

• Tradeoff between space and time!
• Need a closed list which stores every expanded node (memory requirements could make search infeasible)
• If the current node matches a node on the closed list, discard it (i.e. discard the newly discovered path)
• We’ll refer to this algorithm as GRAPH-SEARCH
• Is this optimal? Only for uniform-cost search or breadth-first search with constant step costs.

GRAPH-SEARCH

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← INSERT(Make-Node(INITIAL-STATE[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem)(STATE[node]) then return SOLUTION(node)
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
Things You Should Know

• How to formalize a search problem
• How BFS, UCS, DFS, DLS, IDS and Bidirectional search work
• Whether the above searches are complete and optimal plus their time and space complexity
• The pros and cons of the above searches