A Brief History of Computer Go

1997: Super human Chess w/ Alpha-Beta + Fast Computer
2005: Computer Go is impossible!

Why?

Branching Factor
- Chess ≈ 35
- Go ≈ 250

Required search depth
- Chess ≈ 14
- Go ≈ much larger

Leaf Evaluation Function
- Chess: good hand-coded function
- Go: no good hand-coded function

Computer Go Server rating over this period:
1800 ELO → 2600 ELO

2012: Zen program beats former international champion Takemiya Masaki with only 4 stone handicap in 19x19
2015: DeepMind’s AlphaGo Defeats European Champion 5-0 (lots of learning)
2016: AlphaGo Defeats Go Legend Lee Sedol 4-1 (lots more learning)

AlphaGo
- Deep Learning + Monte Carlo Tree Search + HPC
- Learn from 30 million expert moves and self play
- Highly parallel search implementation
- 48 CPUs, 8 GPUs (scaling to 1,202 CPUs, 176 GPUs)

March 2016: AlphaGo beats Lee Sedol 4-1
Mastering the game of Go with deep neural networks and tree search

Arsenal of AlphaGo
Monte Carlo Tree Search
Deep Neural Networks
Supervised Learning
Huge Data Set

Idea #1: board evaluation function via random rollouts
Evaluation Function:
- play many random games
- evaluation is fraction of games won by current player
- surprisingly effective
Even better if use rollouts that select better than random moves

Monte Carlo Tree Search
Idea #2: selective tree expansion
Non-uniform tree growth

Arsenal of AlphaGo
Monte Carlo Tree Search
Deep Neural Networks
Supervised Learning
Huge Data Set

Mastering the game of Go with deep neural networks and tree search
Deep Neural Networks

How can you write a program to distinguish cats from dogs in images?

Machine Learning: show computer example cats and dogs and let it decide how to distinguish them

Deep Neural Network

State-of-the-Art Performance: very fast GPU implementations allow training giant networks (millions of parameters) on massive data sets

Could a Deep NN learn to predict expert Go moves by looking at board position? Yes!

Arsenal of AlphaGo

- Monte Carlo Tree Search
- Distributed High-Performance Computing
- Deep Neural Networks
- AlphaGo
- Supervised Learning
- Reinforcement Learning
- Huge Data Set

Mastering the game of Go with deep neural networks and tree search

Supervised Learning for Go

- **Input:** Board Position
- **Output:** probability of each move

Deep NN Internal Layers

Trained for 3 weeks on 30 million expert moves

• 57% prediction accuracy!
Reinforcement Learning

Reinforcement Learning: learn to act well in an environment via trial-and-error that results in positive and negative rewards

- **Observation & Reward**
 - Practice
 - Environment

TD-Gammon (1992)

- Neural network with 80 hidden units (1 layer)
- Used Reinforcement Learning for 1.5 Million games of self-play
- One of the top (2 or 3) players in the world!

Reinforcement Learning for Go

Output: probability of each move

Input: Board Position

- Start with Deep NN from supervised learning.
- Continue to train network via self-play.
- AlphaGo did this for months.
- 80% win rate against the original supervised Deep NN
- 85% win rate against best prior tree search method!
- Still not close to professional level

Monte Carlo Tree Search

Idea: use deep NN for rollout evaluation

Problem: deep NN takes too long (msec) to evaluate
Monte Carlo Tree Search

Solution: use deep NN for selection phase
- Evaluate once per tree node
- Use probabilities to bias search toward actions that look good to deep NN

Monte Carlo Tree Search

Solution: train smaller network for rollout
- Less accurate but much faster

AlphaGo
- Deep Learning + Monte Carlo Tree Search + HPC
- Learn from 30 million expert moves and self play
- Highly parallel search implementation
- 48 CPUs, 8 GPUs (scaling to 1,202 CPUs, 176 GPUs)

2015:
AlphaGo beats European Champ (5-0)
- lots of self play
March 2016:
AlphaGo beats Lee Sedol (4-1)

Computers are good at Go now – So What?

- The idea of combining search with learning is very general and widely applicable
- Deep Networks are leading to advances in many areas of AI now
 - Computer Vision
 - Speech Processing
 - Natural Language Processing
 - Bioinformatics
 - Robotics
- It is a very exciting time to be working in AI