How to Write a Good Paper
and
How to Give a Good Talk
(based on Simon Peyton Jones’s how-to tutorials)

Liang Huang
Oregon State University

Simon Peyton Jones’s original slides
Liang’s interpretations and suggestions
Why I am teaching writing...

• not because I am a good writer (in fact I’m not)...

• but because I was a terrible writer!

• NLP studies sentence and discourse structures

• NLP has arguably the highest standards in writing
How I learned writing

• ’03: knew nothing about writing (though I had several papers in China)

• ’04-5: all I wrote was crap; David turned them into beauty
 - e.g. I wrote in a draft (Huang & Chiang 2005) “Bikel (2002) was a hack...”

• ’06-7: some progress by writing, writing, and writing...
 - one of the reviews for a submission with David (rejected)
 - “in general this paper is written with admirable clarity, except for it doesn’t seem to be written by a single author or with the same level of discretion...” (this made me not sad about the rejection... :P)
 - turns out David had revised all but one section (Huang & Chiang 2007)

• ’08 and on: all my submissions got 4 or 5 in “clarity”
How I learned writing

- **fallacy:** students learn to write mainly from advisors
- **truth:** learn from anybody whom you can learn from

I learned writing mainly from...
and from writing seminars of...
and from the slides by...

the rest of the talk is largely based on Simon PJ’s slides.
Why Study Writing/Presentation?

- research is all about communication
- communication involves writing, presenting, teaching
- the first and only principle in communication
 - always have your audience (the reader) in mind!
- technical writing is NOT self-expression, but *infection*
- you are to *teach* those who do not understand it
 - not those who already understand (what’s the point?)
- explaining something deep in a clear way is an art
 - and involves a lot of creativity
Writing is NOT about English

• writing is not about language, but about logic
 • writing is equally hard for both native and non-native speakers of English
• a bad paper is bad in any language

• different levels of writing
 • high-level (paper): global shape, logic, argument, style
 • mid-level (discourse): coherence within a paragraph
 • low-level (sentences): ordering of words and phrases
 • lowest-level (words): word choice, grammar
First Principle: Audience-Centric

- always have your audience (the reader) in mind!
- writing is communication, NOT self-expression!
- reader-centric attitude, not self-centric
The purpose of your paper
Papers communicate ideas

- Your goal: to infect the mind of your reader with your idea, like a virus
- Papers are far more durable than programs (think Mozart)

The greatest ideas are (literally) worthless if you keep them to yourself.
The purpose of your paper is **not**...

To describe the WizWoz system

- Your reader does not have a WizWoz
- She is primarily interested in re-usable brain-stuff, not executable artefacts
Here is a problem

It’s an interesting (important) problem

It’s an unsolved (hard) problem

Here is my idea

My idea works (details, data)

Here’s how my idea compares to other people’s approaches
Structure (conference paper)

- Title (1000 readers)
- Abstract (4 sentences, 100 readers)
- Introduction (1 page, 100 readers)
- The problem (1 page, 10 readers)
- My idea (2 pages, 10 readers)
- The details (5 pages, 3 readers)
- Related work (1-2 pages, 10 readers)
- Conclusions and further work (0.5 pages)
I usually write the abstract \textit{last}.

Used by program committee members to decide which papers to read.

Four sentences [Kent Beck]

1. State the problem
2. Say why it’s an interesting problem
3. Say what your solution achieves
4. Say what follows from your solution
Example

1. Many papers are badly written and hard to understand
2. This is a pity, because their good ideas may go unappreciated
3. Following simple guidelines can dramatically improve the quality of your papers
4. Your work will be used more, and the feedback you get from others will in turn improve your research
Abstract (4 sentences)

Introduction (1 page)

The problem (1 page)

My idea (2 pages)

The details (5 pages)

Related work (1-2 pages)

Conclusions and further work (0.5 pages)
The introduction (1 page)

1. **Describe the problem**
2. **State your contributions**

...and that is all

LH: this is the hardest part of writing!

need to convey:
importance and hardness

ONE PAGE!

abstract:

1. State the problem
2. Say why it’s an interesting problem
3. Say what your solution achieves
4. Say what follows from your solution
LH Method for Stating the Problem

• intro = “your *slightly* biased view of the history” [N. Dinesh]
• need to convey: importance and depth

- this is an *important* problem
- the dominant solution is good in A
- but bad in B (and B is important)
- the alternative solution is good in B
- but bad in A
- Q: how to combine their merits?? a *hard* problem!

Forest Reranking: Discriminative Parsing with Non-Local Features

Liang Huang
University of Pennsylvania

Abstract

Conventional \(n \)-best reranking techniques often suffer from the limited scope of the \(n \)-best list, which rules out many potentially good alternatives. We instead propose forest reranking, a method that reranks a packed forest of exponentially many parses. Since exact inference is intractable with non-local features, we present an approximate algorithm inspired by forest rescoring that makes discriminative training practical over the whole Treebank. Our final result, an F-score of 91.7, outperforms both 50-best and 100-best reranking baselines, and is better than any previously reported systems trained on the Treebank.

<table>
<thead>
<tr>
<th>conventional reranking</th>
<th>(\text{local})</th>
<th>(\text{non-local})</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP-based discrim. parsing</td>
<td>only at the root</td>
<td>exact</td>
</tr>
</tbody>
</table>

Table 1: Comparison of various approaches for incorporating local and non-local features.

1 Introduction

Discriminative reranking has become a popular technique for many NLP problems, in particular, parsing (Collins, 2000) and machine translation (Shen et al., 2005). Typically, this method first generates a list of top-\(n \) candidates from a baseline system, and then reranks this \(n \)-best list with arbitrary features that are not computable or intractable to compute within the baseline system. But despite its apparent success, there remains a major drawback: this method suffers from the limited scope of the \(n \)-best list, which rules out many potentially good alternatives. For example, 41% of the correct parses were not in the candidates of \(\sim 30 \)-best parses in (Collins, 2000). This situation becomes worse with longer sentences because the number of possible interpretations grows exponentially with the sentence length. As a result, we often see very few variations among the \(n \)-best trees, for example, 50-best trees typically just represent a combination of 5 to 6 binary ambiguities (since \(2^5 < 50 < 2^6 \)).

Alternatively, discriminative parsing is tractable with exact and efficient search based on dynamic programming (DP) if all features are restricted to be local, that is, only looking at a local window within the factored search space (Taskar et al., 2004; McDonald et al., 2005). However, we miss the benefits of non-local features that are not representable here. Ideally, we would wish to combine the merits of both approaches, where an efficient inference algorithm could integrate both local and non-local features. Unfortunately, exact search is intractable (at least in theory) for features with unbounded scope. So we propose forest reranking, a technique inspired by forest rescoring (Huang and Chiang, 2007) that approximately reranks the packed forest of exponentially many parses. The key idea is to compute non-local features incrementally from bottom up, so that we can rerank the \(n \)-best subtrees at all internal nodes, instead of only at the root node as in conventional reranking (see Table 1). This method can thus
State your contributions

- Write the list of contributions first
- The list of contributions drives the entire paper: the paper substantiates the claims you have made
- Reader thinks “gosh, if they can really deliver this, that’s be exciting; I’d better read on”
State your contributions

Which of the two is best in practice? The trouble is that the evaluation model has a pervasive effect on the implementation, so it is too much work to implement both and pick the best. Historically, compilers for strict languages (using call-by-value) have tended to use eval/apply, while those for lazy languages (using call-by-need) have often used push/enter, but this is 90% historical accident—either approach will work in both settings. In practice, implementors choose one of the two approaches based on a qualitative assessment of the trade-offs. In this paper we put the choice on a firmer basis:

- We explain precisely what the two models are, in a common notational framework (Section 4). Surprisingly, this has not been done before.
- The choice of evaluation model affects many other design choices in subtle but pervasive ways. We identify and discuss these effects in Sections 5 and 6, and contrast them in Section 7. There are lots of nitty-gritty details here, for which we make no apology—they were far from obvious to us, and articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system complexity, eval/apply seems decisively superior, principally because push/enter requires a stack like no other: stack-walking
Contributions should be refutable

<table>
<thead>
<tr>
<th>NO!</th>
<th>YES!</th>
</tr>
</thead>
<tbody>
<tr>
<td>We describe the WizWoz system. It is really cool.</td>
<td>We give the syntax and semantics of a language that supports concurrent processes (Section 3). Its innovative features are...</td>
</tr>
<tr>
<td>We study its properties</td>
<td>We prove that the type system is sound, and that type checking is decidable (Section 4)</td>
</tr>
<tr>
<td>We have used WizWoz in practice</td>
<td>We have built a GUI toolkit in WizWoz, and used it to implement a text editor (Section 5). The result is half the length of the Java version.</td>
</tr>
</tbody>
</table>
What does “refutable” mean?

- refutable: falsifiable (可证伪的); easily verifiable

<table>
<thead>
<tr>
<th>not refutable</th>
<th>refutable</th>
</tr>
</thead>
<tbody>
<tr>
<td>I’ll devote myself to the American people.</td>
<td>I’ll reduce unemployment rate by 5% by 2010.</td>
</tr>
<tr>
<td>政府将尽全力为人民服务.</td>
<td>政府将在两年之内把PM 2.5降低50%.</td>
</tr>
<tr>
<td>our algorithm is really effective and efficient.</td>
<td>our algorithm is faster than Jones’s by a factor of $n^2\log n$.</td>
</tr>
</tbody>
</table>
No “rest of this paper is...”

Not:

“The rest of this paper is structured as follows. Section 2 introduces the problem. Section 3 ... Finally, Section 8 concludes”.

Instead, use forward references from the narrative in the introduction. The introduction (including the contributions) should survey the whole paper, and therefore forward reference every important part.
Structure

- Abstract (4 sentences)
- Introduction (1 page)
- Related work
- The problem (1 page)
- My idea (2 pages)
- The details (5 pages)
- Related work (1-2 pages)
- Conclusions and further work (0.5 pages)
We adopt the notion of transaction from Brown [1], as modified for distributed systems by White [2], using the four-phase interpolation algorithm of Green [3]. Our work differs from White in our advanced revocation protocol, which deals with the case of priority inversion as described by Yellow [4].
No related work yet

Problem 1: the reader knows nothing about the problem yet; so your (carefully trimmed) description of various technical tradeoffs is absolutely incomprehensible.

Problem 2: describing alternative approaches gets between the reader and your idea.

LH: you haven’t established the vocabulary after sec. 1
LH: but you will have all notations and vocabulary set up by sec. 6
LH: Two Types of Previous Work

- essential background
- the previous work that your work builds upon
- or improve upon (“shoulders of giants”)
- => intro (w/o which the readers can’t understand your work)
- or “Section 2: Preliminaries” (mathy background, e.g., Hiero/SCFG)
- related work: other previous work that is just related to yours
- skipping them doesn’t impede the understanding of your work
- simple criteria: can readers understand my work without A?

<table>
<thead>
<tr>
<th>your work</th>
<th>related work</th>
</tr>
</thead>
<tbody>
<tr>
<td>(secs. 3-5)</td>
<td>(sec. 6)</td>
</tr>
<tr>
<td>essential background</td>
<td>essential background</td>
</tr>
</tbody>
</table>
Examples of Sec. 2: Preliminaries

- Sec. 2 should be tutorial-like
Abstract (4 sentences)

Introduction (1 page)

The problem (1 page)

My idea (2 pages)

The details (5 pages)

Related work (1-2 pages)

Conclusions and further work (0.5 pages)
3. The idea

Consider a bifurcated semi-lattice D, over a hyper-modulated signature S. Suppose p_i is an element of D. Then we know for every such p_i there is an epi-modulus j, such that $p_j < p_i$.

Sounds impressive...but

Sends readers to sleep

In a paper you MUST provide the details, but FIRST convey the idea.
Presenting the idea

- Explain it as if you were speaking to someone using a whiteboard
- *Conveying the intuition is primary, not secondary*
- Once your reader has the intuition, she can follow the details (but not vice versa)
- Even if she skips the details, she still takes away something valuable
Do not recapitulate your personal journey of discovery. This route may be soaked with your blood, but that is not interesting to the reader.

Instead, choose the most direct route to the idea.
The payload of your paper

Introduce the problem, and your idea, using **EXAMPLES**

and only then present the general case.
Using examples

2 Background

To set the scene for this paper, we begin with a brief overview of the *Scrap your boilerplate* approach to generic programming. Suppose that we want to write a function that computes the size of an arbitrary data structure. The basic algorithm is “for each node, add the sizes of the children, and add 1 for the node itself”. Here is the entire code for `gsize`:

```haskell
  gsize :: Data a => a -> Int
  gsize t = 1 + sum (gmapQ gsize t)
```

The type for `gsize` says that it works over any type `a`, provided `a` is a *data* type — that is, that it is an instance of the class `Data`.

The definition of `gsize` refers to the operation `gmapQ`, which is a method of the `Data` class:

```haskell
  class Typeable a => Data a where
    ...other methods of class Data...
  gmapQ :: (forall b. Data b => b -> r) -> a -> [r]
```
Examples and Illustrations

Figure 2: Illustration of some example features. Shaded nodes denote information included in the feature.

tags, which are generated dynamically.

More formally, we split the feature extractor $f = (f_1, \ldots, f_d)$ into $f = (f_L; f_N)$ where f_L and f_N are the local and non-local features, respectively. For the former, we extend their domains from parses to hyperedges, where $f(e)$ returns the value of a local feature $f \in f_L$ on hyperedge e, and its value on a parse y factors across the hyperedges (local productions),

Figure 3: Example of the unit **NGramTree** feature at node $A_{i,k}$: $\langle A (B \ldots w_{j-1}) (C \ldots w_j) \rangle$.

Liang Huang (CUNY)
Examples and Illustrations

Figure 5: (a) Pharaoh expands the hypotheses in the current bin (#2) into longer ones. (b) In Cubit, hypotheses in previous bins are fed via hyperedge bundles (solid arrows) into a priority queue (shaded triangle), which empties into the current bin (#5).

Figure 6: A hyperedge bundle represents all +LM deductions that derives an item in the current bin from the same coverage vector (see Figure 5). The phrases on the top denote the target-sides of applicable phrase-pairs sharing the same source-side.

5.1 Phrase-based Decoding

We implemented Cubit, a Python clone of the Pharaoh decoder (Koehn, 2004), and adapted cube pruning to it as follows. As in Pharaoh, each bin
Visual structure

The three cases above do not exhaust the possible forms of \(f \). It might also be a \textit{THUNK}, but we have already dealt with that case (rule THUNK). It might be a \textit{CON}, in which case there cannot be any pending arguments on the stack, and rules \textit{UPDATE} or \textit{RET} apply.

4.3 The eval/apply model

The last block of Figure 2 shows how the eval/apply model deals with function application. The first three rules all deal with the case of a \textit{FUN} applied to some arguments:

- If there are exactly the right number of arguments, we behave exactly like rule \textsc{KnownCall}, by tail-calling the function. Rule \textsc{Exact} is still necessary — and indeed has a direct counterpart in the implementation — because the function might not be statically known.

- If there are too many arguments, rule \textsc{CallK} pushes a \textit{call}

The remainder of the object is called the payload, and may consist of a mixture of pointers and non-pointers. For example, the object \(\textit{CON} (C \ a_1 \ldots a_n) \) would be represented by an object whose info pointer represented the constructor \(C \) and whose payload is the arguments \(a_1 \ldots a_n \).

The info table contains:

- Executable code for the object. For example, a \textit{FUN} object has code for the function body.

- An object-type field, which distinguishes the various kinds of objects (\textit{FUN}, \textit{PAP}, \textit{CON} etc) from each other.

- Layout information for garbage collection purposes, which describes the size and layout of the payload. By "layout" we mean which fields contain pointers and which contain non-pointers, information that is essential for accurate garbage collection.

- Type-specific information, which varies depending on the object type. For example, a \textit{FUN} object contains its arity; a \textit{CON} object contains its constructor tag, a small integer that distinguishes the different constructors of a data type; and so on.

In the case of a \textit{PAP}, the size of the object is not fixed by its info table; instead, its size is stored in the object itself. The layout of its fields (e.g. which are pointers) is described by the (initial segment of) an argument-descriptor field in the info table of the \textit{FUN} object which is always the first field of a \textit{PAP}. The other kinds of heap object all have a size that is statically fixed by their info table.

A very common operation is to jump to the entry code for the object, so \textsc{GHC} uses a slightly-optimised version of the representation in Figure 3. \textsc{GHC} places the info table at the addresses immediately
Visual Structure -- Breathe!

(a) Rule (local) \[\langle VP \rightarrow VBD \ NP \ PP \rangle \]
(b) ParentRule (non-local) \[\langle VP \rightarrow VBD \ NP \ PP \mid S \rangle \]
(c) WordEdges (local) \[\langle NP \ 5 \ has \ . \rangle \]
(d) NGramTree (non-local) \[\langle VP \ (VBD \ saw) \ (NP \ (DT \ the)) \rangle \]

Figure 2: Illustration of some example features. Shaded nodes denote information included in the feature.

tags, which are generated dynamically.

More formally, we split the feature extractor \(f = (f_1, \ldots, f_d) \) into \(f = (f_L; f_N) \) where \(f_L \) and \(f_N \) are the local and non-local features, respectively. For the former, we extend their domains from parses to hyperedges, where \(f(e) \) returns the value of a local feature \(f \in f_L \) on hyperedge \(e \), and its value on a parse factors across the hyperedges (local productions),

Figure 3: Example of the unit NGramTree feature at node \(A_{i,k} \): \[\langle A \ (B \ldots w_{j-1}) \ (C \ldots w_j) \rangle \].
Visual Structure -- Breathe!

Abstract

Most current parameter tuning methods for machine translation (such as MERT and PRO) are agnostic about search, while search errors are well-known to adversely affect translation quality. We propose to promote potentially accurate partial translations and prevent them from being pruned, and develop two metrics to evaluate partial derivations. Our method can be applied to all of the three most popular tuning algorithms: MERT, PRO, and MIRA, where extensive experiments on Chinese-to-English and English-to-Chinese translation show up to +2.6 BLEU gains with each of the three algorithms.

1 Introduction

Parameter tuning has been an active area of research in machine translation. However, most of the existing tuning algorithms only compare complete translations (Och, 2003; Hopkings and May, 2011; Chiang, 2012), while many potentially “promising” partial translations are pruned by the search algorithm in the prohibitively large search space. For example, the popular beam-search decoding algorithm for phrase-based MT (Koehn, 2004) only explores $O(n^b)$ items for a sentence of n words (with a beam width of b), while the full search space is $O(2^n n^2)$ or worse (Knight, 1999).

As one of the few exceptions to the “search-agnostic” majority, Yu et al. (2013) and Zhao et al. (2014) propose a variant of the perceptron algorithm that learns to keep the reference translations in the beam or chart. However, there are several obstacles that prevent their method from becoming popular: First of all, they rely on “forced decoding” to track gold derivations that lead to the reference translation, but in practice only a small portion (around 30% in their experiments) of (mostly very short) sentence pairs have at least one such derivation. Secondly, they learn the model on the training set, and while this does enable a huge feature set, it is much too slow compared to MERT and PRO (by at least an order of magnitude).

We instead propose a very simple framework, search-aware tuning, which does not depend on forced decoding, and thus can be trained on all sentence pairs of any dataset. The key idea of our new approach is that, besides caring about the rankings of the complete translations, we also promote potentially promising partial translations so that they are more likely to survive throughout the search, see Figure 1 for illustration. We make the following contributions:

- Our idea of search-aware tuning can be applied (as a patch) to all the three most popular tuning methods (MERT, PRO, and MIRA) by defining a modified objective function (Section 4).
- To measure the “promise” or “potential” of a...
“Remember to think of the paper as a collection of experimental results, summarized as clearly and economically as possible in figures, tables, equations, and schemes. The text in the paper serves just to explain the data, and is secondary. The more information can be compressed into tables, equations, etc., the shorter and more readable the paper will be.” -- George Whitesides

Much of CS is not an experimental science, but you can still think of a paper as a collection of ideas, examples, algorithms and pseudocode, diagrams, definitions, theorems, proofs, plots, and tables.

focus on the non-text parts and write text just to explain them
Visual Structure -- Paper Gestalt

- scientific evidences from CVPR 2010 - “paper gestalt”
- a paper’s fate (acceptance/rejection) can largely be determined by its visual features (layout) alone!

Thanks to Jian Cheng and Junliang Xing for suggesting “paper gestalt”.
Visual Structure -- Paper Gestalt

- scientific evidences from CVPR 2010 - “paper gestalt”
- a paper’s fate (acceptance/rejection) can largely be determined by its visual features (layout) alone!

Thanks to Jian Cheng and Junliang Xing for suggesting “paper gestalt”.

Figure 7. Characteristics of a “Bad” paper.
Visual Structure -- Paper Gestalt

- scientific evidences from CVPR 2010 - “paper gestalt”
- a paper’s fate (acceptance/rejection) can largely be determined by its visual features (layout) alone!

Figure 8. Our paper. While it certainly suffers from the problem of missing/blank pages, it has a nice composition of colorful figures and impressive mathematical equations.

Thanks to Jian Cheng and Junliang Xing for suggesting “paper gestalt”.
The details: evidence

- Your introduction makes claims
- The body of the paper provides evidence to support each claim
- Check each claim in the introduction, identify the evidence, and forward-reference it from the claim
- Evidence can be: analysis and comparison, theorems, measurements, case studies
Structure

- Abstract (4 sentences)
- Introduction (1 page)
- The problem (1 page)
- My idea (2 pages)
- The details (5 pages)
- Related work (1-2 pages)
- Conclusions and further work (0.5 pages)
Related work

Fallacy

To make my work look good, I have to make other people’s work look bad
The truth: credit is not like money

Giving credit to others does not diminish the credit you get from your paper

- Warmly acknowledge people who have helped you
- Be generous to the competition. “In his inspiring paper [Foo98] Foogle shows…. We develop his foundation in the following ways…”
- Acknowledge weaknesses in your approach
Credit is not like money

Failing to give credit to others can kill your paper

If you imply that an idea is yours, and the referee knows it is not, then either

- You don’t know that it’s an old idea (bad)
- You do know, but are pretending it’s yours (very bad)
Structure

- Abstract (4 sentences)
- Introduction (1 page)
- The problem (1 page)
- My idea (2 pages)
- The details (5 pages)
- Related work (1-2 pages)
- Conclusions and further work (0.5 pages)
Conclusions and further work

Be brief.
The process of writing
Writing papers: model 1

Idea → Do research → Write paper
Writing papers: model 2

- Idea → Do research → Write paper

- Idea → Write paper → Do research

LH: proposal

- Forces us to be clear, focused
- Crystallises what we don’t understand
- Opens the way to dialogue with others: reality check, critique, and collaboration

J. Eisner
Do not be intimidated

Fallacy You need to have a fantastic idea before you can write a paper. (Everyone else seems to.)

Write a paper, and give a talk, about any idea, no matter how weedy and insignificant it may seem to you.
Do not be intimidated

Write a paper, and give a talk, about any idea, no matter how insignificant it may seem to you.

- Writing the paper is how you develop the idea in the first place.
- It usually turns out to be more interesting and challenging than it seemed at first.

LH: talk, write as early as you can; don’t wait until you feel ready; it doesn’t mean you have to publish it.
Start early. Very early.

Hastily-written papers get rejected.

Papers are like wine: they need time to mature

Collaborate

Use CVS to support collaboration
Getting help

Get your paper read by as many friendly guinea pigs as possible

- Experts are good
- Non-experts are also very good
- Each reader can only read your paper for the first time once! So use them carefully
- Explain carefully what you want ("I got lost here" is much more important than "Jarva is mis-spelt").
Listening to your reviewers

Treat every review like gold dust
Be (truly) grateful for criticism as well as praise

This is really, really, really hard

But it’s really, really important
Listening to your reviewers

- Read every criticism as a positive suggestion for something you could explain more clearly.
- DO NOT respond "you stupid person, I meant X". Fix the paper so that X is apparent even to the stupidest reader.
- Thank them warmly. They have given up their time for you.
Language and style
Use the active voice

The passive voice is “respectable” but it DEADENS your paper. Avoid it at all costs.

<table>
<thead>
<tr>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>It can be seen that...</td>
<td>We can see that...</td>
</tr>
<tr>
<td>34 tests were run</td>
<td>We ran 34 tests</td>
</tr>
<tr>
<td>These properties were thought desirable</td>
<td>We wanted to retain these properties</td>
</tr>
<tr>
<td>It might be thought that this would be a type error</td>
<td>You might think this would be a type error</td>
</tr>
</tbody>
</table>

“We” = the authors

“You” = the reader

“We” = you and the reader
Even Newton used the active voice!

- I held the Prism.
- I looked through the Prism
- I stopt the Prism
- I observed the length of its refracted Image
- I removed the Prism out of the Sun’s Light and looked

Isaac Newton (1704), Optics.
Use simple, direct language

<table>
<thead>
<tr>
<th>NO</th>
<th>YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>The object under study was displaced horizontally</td>
<td>The ball moved sideways</td>
</tr>
<tr>
<td>On an annual basis</td>
<td>Yearly</td>
</tr>
<tr>
<td>Endeavour to ascertain</td>
<td>Find out</td>
</tr>
<tr>
<td>It could be considered that the speed of storage reclamation left something to be desired</td>
<td>The garbage collector was really slow</td>
</tr>
</tbody>
</table>
Resources for the Writing Part

- high-level (language-independent)
 - Simon Peyton-Jones: *How to Write a Research Paper*
 - Mark-Jan Nederhof: *Common Pitfalls in Academic Writing*

- low-level (language-specific -- use NLP!)
 - Gopen & Swan: *The Science of Scientific Writing*
 - Williams: *STYLE: Clarity and Grace* series
 - Strunk and White: *The Elements of Style*
 - Cook: *Line by Line*
How to give a good research talk

Simon Peyton Jones
Microsoft Research, Cambridge

1993 paper joint with
John Hughes (Chalmers),
John Launchbury (Oregon Graduate Institute)
Your ideal audience...

The audience you would like

☑ Have read your earlier papers

☑ Thoroughly understand all the relevant theory of cartesian closed endomorphic bifunctors

☑ Are all dying to hear about the latest developments in your work

☑ Are fresh, alert, and ready for action
Your actual audience...

The audience you get

- Have never heard of you
- Have heard of bifunctors, but wish they hadn’t
- Have just had lunch and are ready for a doze

Your mission is to

WAKE THEM UP

And make them glad they did
What your talk is for

Your paper = The beef

Your talk = The beef advertisement

Do not confuse the two
The purpose of your talk...

- To give your audience an intuitive feel for your idea
- To make them foam at the mouth with eagerness to read your paper
- To engage, excite, provoke them

“I think the first duty of all art, including fiction of any kind, is to entertain. That is to say, to hold interest. No matter how worthy the message of something, if it's dull, you're just not communicating.” -- Poul Anderson
What to put in
What to put in

1. Motivation (20%)
2. Your key idea (80%)
3. There is no 3
Motivation

You have 2 minutes to engage your audience before they start to doze

- Why should I tune into this talk?
- What is the problem?
- Why is it an interesting problem?

Example: Java class files are large (brief figures), and get sent over the network. Can we use language-aware compression to shrink them?

Example: synchronisation errors in concurrent programs are a nightmare to find. I’m going to show you a type system that finds many such errors at compile time.
Your key idea

If the audience remembers only one thing from your talk, what should it be?

- You must identify a key idea. “What I did this summer” is No Good.
- Be specific. Don’t leave your audience to figure it out for themselves.
- Be absolutely specific. Say “If you remember nothing else, remember this.”
- Organise your talk around this specific goal. Ruthlessly prune material that is irrelevant to this goal.
Avoid shallow overviews at all costs
Cut to the chase: the technical "meat"
Examples are your main weapon

- To motivate the work
- To convey the basic intuition
- To illustrate The Idea in action
- To show extreme cases
- To highlight shortcomings

When time is short, omit the general case, not the example
LH: Your main weapon #2

Visualization!
a picture is worth a thousand words!

- Greedy search
- Beam search
Example: Dynamic Programming

- each state => three new states (shift, l-reduce, r-reduce)
- key idea of DP: share common subproblems
 - merge equivalent states => polynomial space

(Huang and Sagae, 2010)
Example: Dynamic Programming

- each state => three new states (shift, l-reduce, r-reduce)
- key idea of DP: share common subproblems
 - merge equivalent states => polynomial space

(Huang and Sagae, 2010)
Real Life Analogy: Lebesgue Integral

- Riemann Integral (Newton-Leibniz Style)
 - intuitive, but left many important functions unintegrable

- Lebesgue Integral
 - greatly extended the domain of integrable functions

Lebesgue to Paul Montel:

I have to pay a certain sum, which I have collected in my pocket. I take the bills and coins out of my pocket and give them to the creditor in the order I find them until I have reached the total sum. This is the Riemann integral. But I can proceed differently. After I have taken all the money out of my pocket I order the bills and coins according to identical values and then I pay the several heaps one after the other to the creditor. This is my integral.—Source: (Siegmund-Schultze 2008)
Real Life Analogy: Public-Key

private key

public key

private key

public key

public key

private key
What to leave out
Outline of my talk

- Background
- The FLUGOL system
- Shortcomings of FLUGOL
- Overview of synthetic epimorphisms
- π-reducible decidability of the pseudo-curried fragment under the Snezkovwski invariant in FLUGOL
- Benchmark results
- Related work
- Conclusions and further work
No outline!

“Outline of my talk”: conveys near zero information at the start of your talk

But you can put up an outline for orientation after your motivation

...and signposts at pause points
Related work

[PMW83] The seminal paper

[SPZ88] First use of epimorphisms

[PN93] Application of epimorphisms to wibblification

[BXX98] Lacks full abstraction

[XXB99] Only runs on Sparc, no integration with GUI
Do not present related work

But

- You absolutely must know the related work; respond readily to questions
- Acknowledge co-authors (title slide), and precursors (as you go along)
- Do not disparage the opposition
- X’s very interesting work does Y; I have extended it to do Z
\[
\begin{align*}
\Gamma \vdash k : \tau_k \\
\Gamma \vdash \lambda x.e : \tau \rightarrow \tau' \\
\Gamma \vdash e : \tau \\
\Gamma \vdash \text{returnST } e : ST \tau^0 \tau \\
\Gamma \vdash e : \tau \\
\Gamma \vdash e : \text{MutVar } \tau^0 \tau \\
\Gamma \vdash e_1 : \text{MutVar } \tau^0 \tau \\
\Gamma \vdash e_2 : \tau \\
\Gamma \vdash \text{writeVar } e_1 e_2 : ST \tau^0 \text{ Unit} \\
\Gamma \vdash e : \tau' \rightarrow \tau \\
\Gamma \vdash e' : \tau' \\
\Gamma \vdash e e' : \tau \\
\Gamma \vdash e : \text{ST } \alpha^0 \tau \\
\Gamma \vdash \text{runST } e : \tau \\
\forall j. \Gamma \cup \{x_i : \tau_i\}_{i} \vdash e_j : \tau_j \\
\Gamma \cup \{x_i : \forall \alpha_{j_i} \cdot \tau_i\}_{i} \vdash e' : \tau' \\
\Gamma \vdash \text{let } \{x_i = e_i\}_{i} \text{ in } e' : \tau' \\
\end{align*}
\]

\[\Gamma \vdash e_1 : \text{ST } \tau^0 \tau \\
\Gamma \vdash e_2 : \tau \rightarrow \text{ST } \tau^0 \tau' \\
\Gamma \vdash e_1 \gg e_2 : \text{ST } \tau^0 \tau'
\]

\[\Gamma \vdash \text{newVar } e : \text{ST } \tau^0 (\text{MutVar } \tau^0 \tau) \]

\[\Gamma \vdash \text{readVar } e : \text{ST } \tau^0 \tau \]

\[\Gamma \vdash \text{readVar } e : \text{ST } \tau^0 \tau \]

Figure 1. Typing Rules
Omit technical details

- Even though every line is drenched in your blood and sweat, dense clouds of notation will send your audience to sleep.

- Present specific aspects only; refer to the paper for the details.

- By all means have backup slides to use in response to questions.
Presenting your talk
Polish your slides the night before

(...or at least, polish it then)

Your talk absolutely must be fresh in your mind

- Ideas will occur to you during the conference, as you obsess on your talk during other people’s presentations
- Do not use typeset slides, unless you have a laptop too
- Handwritten slides are fine
 - Use permanent ink
 - Get an eraser: toothpaste does not work
How to present your talk

By far the most important thing is to be enthusiastic
Enthusiasm

- If you do not seem excited by your idea, why should the audience be?
- It wakes 'em up
- Enthusiasm makes people dramatically more receptive
- It gets you loosened up, breathing, moving around
LH: Be Fun -- Three Jokes Rule

- Include as many relevant jokes as possible
- three jokes rule
 - one at the beginning (motivation)
 - one at the middle (to wake people up)
 - and one at the end (take-home point)
- especially important in job talks!
Relevant Jokes: Translation Errors

liang’s rule: if you see “X carefully” in China, just don’t do it.
Relevant Jokes: Translation Errors

一旦失窃要报警，切莫姑息又养奸
If you are stolen, call the police at once.

上海市公安局城市轨道交通分局
Urban Mass Transportation Branch Shanghai Public Security Bureau

ENGRIISH FUNNY.com
Relevant Jokes: Translation Errors

clear evidence that MT is used in real life.
LH: Use a wireless presenter

- wireless click + laser pointer + [USB disk]
- smoothes your transition!
Face the audience and Be Active!

- avoid looking and pointing at your laptop
- look at the audience (70%), screen (25%), and laptop (5%)
- do NOT stand still behind the lectern; move around!
Use Keynote instead of Powerpoint

- PPT sucks (although it’s the best software from MSFT)
- Keynote is much more elegant
- LaTeX is OK only for very mathematical talks (eg PL)
 - even there I think Keynote might be better
Absolutely without fail, finish on time

- Audiences get restive and essentially **stop listening** when your time is up. Continuing is very counter productive
- Simply truncate and conclude
- Do **not** say “would you like me to go on?” (it’s hard to say “no thanks”)
There is hope

The general standard is so low that you don’t have to be outstanding to stand out.

You will attend 50x as many talks as you give. Watch other people’s talks intelligently, and pick up ideas for what to do and what to avoid.
Conclusion: Technical Communication

interaction: almost zero, a little or a lot, a whole lot

technical details: needed, not needed, needed

difficulty: hardest, easiest, depends