1. Let A, B, C be events in sample space S. Show that

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

2. A number is selected uniformly at random from the set of even natural numbers $\{2, 4, 6, \ldots, 100\}$.
 (a) Draw the venn diagram.
 (b) What is the probability that it is divisible by 2, but neither by 4 nor by 7?

3. An experiment consists of tossing two six sided dice.
 (a) Find the sample space S.
 (b) Find the event A that the sum of the dots on the dice equals 7.
 (c) Find the event B that the sum of the dots on the dice is greater than 10.
 (d) Find the event C that the sum of the dots on the dice is greater than 12.
 (e) Calculate $P(A \cup B \cup C)$

4. Let Ω be a sample space and let ω_0 be a fixed point in Ω. For any event A,

$$P(A) = \begin{cases}
1, & \omega_0 \in A \\
0, & \text{otherwise}
\end{cases}$$

Show that P satisfies the axioms of a probability.