Informed Search

• How can we make search smarter?
• Use problem-specific knowledge beyond the definition of the problem itself
• Specifically, incorporate knowledge of how good a non-goal state is

Best-First Search

• Node selected for expansion based on an evaluation function $f(n)$. i.e. expand the node that appears to be the best
• Node with lowest evaluation is selected for expansion
• Uses a priority queue
• We’ll talk about Greedy Best-First Search and A* Search

Heuristic Function

• $h(n) = \text{estimated cost of the cheapest path from node } n \text{ to a goal node}$
• $h(\text{goal node}) = 0$
• Contains additional knowledge of the problem

Greedy Best-First Search

• Expands the node that is closest to the goal
• $f(n) = h(n)$

Greedy Best-First Search Example
Greedy Best-First Search Example

<table>
<thead>
<tr>
<th>City</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corvallis</td>
<td>56</td>
</tr>
<tr>
<td>Albany</td>
<td>49</td>
</tr>
<tr>
<td>Salem</td>
<td>28</td>
</tr>
<tr>
<td>Portland</td>
<td>17</td>
</tr>
<tr>
<td>McMinnville</td>
<td>18</td>
</tr>
</tbody>
</table>

Corvallis → McMinnville → Wilsonville = 74 miles

But the route below is much shorter than the route found by Greedy Best-First Search!

Corvallis → Albany → Salem → Wilsonville = 67 miles

Evaluating Greedy Best-First Search

<table>
<thead>
<tr>
<th>Feature</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>No (could start down an infinite path)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>No</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^m)$</td>
</tr>
</tbody>
</table>

Greedy Best-First search results in lots of dead ends which leads to unnecessary nodes being expanded

A* Search

- A much better alternative to greedy best-first search
- Evaluation function for A* is:
 $$f(n) = g(n) + h(n)$$
 where $g(n) =$ path cost from the start node to n
- If $h(n)$ satisfies certain conditions, A* search is optimal and complete!
Admissible Heuristics

- A* is optimal if \(h(n) \) is an admissible heuristic
- An admissible heuristic is one that never overestimates the cost to reach the goal
- Admissible heuristic = optimistic
- Straight line distance was an admissible heuristic

A* Search Example

Corvallis

McMinnville
46+18=64

Albany
11+49=60

Salem
37+28=65

Portland
84+17=101

Wilsonville
74+0=74

Corvallis
22+56=78

Proper termination: Stop when you pop a goal state from the priority queue (otherwise you get a suboptimal solution)
Proof that A* using TREE-SEARCH is optimal if h(n) is admissible

- Suppose a suboptimal goal node G₂ appears on the fringe and let the cost of the optimal solution be C*.
- Because G₂ is suboptimal:
 \[f(G₂) = g(G₂) + h(G₂) = g(G₂) > C* \]
- Now consider a fringe node n on an optimal solution path.
- If h(n) is admissible then:
 \[f(n) = g(n) + h(n) \leq C* \]
- We have shown that \(f(n) \leq C* < f(G₂) \), so G₂ will not get expanded and A* must return an optimal solution.

What about search graphs (more than one path to a node)?

- What if we expand a state we’ve already seen?
- Suppose we use the GRAPH-SEARCH solution and not expand repeated nodes.
- Could discard the optimal path if it’s not the first one generated.
- One simple solution: ensure optimal path to any repeated state is always the first one followed (like in Uniform-cost search).
- Requires an extra requirement on h(n) called consistency (or monotonicity).

Consistency

- A heuristic is consistent if, for every node n and every successor n’ of n generated by any action a:
 \[h(n) \leq c(n,a,n’) + h(n’) \]
- A form of the triangle inequality – each side of the triangle cannot be longer than the sum of the two sides.

A* is Optimally Efficient

- Among optimal algorithms that expand search paths from the root, A* is optimally efficient for any given heuristic function.
- Optimally efficient: no other optimal algorithm is guaranteed to expand fewer nodes than A*.
- Fine print: except A* might possibly expand more nodes with \(f(n) = C* \) where C* is the cost of the optimal path – tie-breaking issues.
- Any algorithm that does not expand all nodes with \(f(n) < C* \) runs the risk of missing the optimal solution.

Consistency

- Every consistent heuristic is also admissible.
- A* using GRAPH-SEARCH is optimal if h(n) is consistent.
- Most admissible heuristics are also consistent.

Consistency

- If h(n) is consistent, then the values of f(n) along any path are nondecreasing.
- Proof: Suppose n’ is a successor of n.
 Then \(g(n’) = g(n) + c(n,a,n’) \) for some a, and we have
 \[f(n’) = g(n’) + h(n’) = g(n) + c(n,a,n’) + h(n’) \geq g(n) + h(n) \]
- Thus, the sequence of nodes expanded by A* is in nondecreasing order of f(n).
- First goal selected for expansion must be an optimal solution since all later nodes will be at least as expensive.
Evaluating A* Search

With a consistent heuristic, A* is complete, optimal and optimally efficient. Could this be the answer to our searching problems?

The Dark Side of A*…

Time complexity is exponential (although it can be reduced significantly with a good heuristic)

The really bad news: space complexity is exponential (usually need to store all generated states). Typically runs out of space on large-scale problems.

Summary of A* Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes if $h(n)$ is consistent, b is finite, and all step costs exceed some finite ε 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if $h(n)$ is consistent and admissible</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^d)$ (In the worst case but a good heuristic can reduce this significantly)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^d)$ – Needs O(number of states), will run out of memory for large search spaces</td>
</tr>
</tbody>
</table>

1 Since $f(n)$ is nondecreasing, we must eventually hit an $f(n) = \text{cost of the path to a goal state}$

Iterative Deepening A*

- Use iterative deepening trick to reduce memory requirements for A*
- Cutoff is the f-cost ($g+h$) rather than the depth
- At each iteration, the cutoff is the smallest f-cost that exceeded the cutoff in the previous iteration

Complete, Optimal but more costly than A* and can take a while to run with real-valued costs

Examples of heuristic functions

The 8-puzzle

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Start State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

End State

Heuristic #1: $h_1 = \text{number of misplaced tiles}$. Eg. start state has 8 misplaced tiles. This is an admissible heuristic.

The 8-puzzle

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Start State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

End State

Heuristic #2: $h_2 = \text{total Manhattan distance (sum of horizontal and vertical moves, no diagonal moves)}$. Start state is $3+1+2+2+3+2+2+3=18$ moves away from the end state. This is also an admissible heuristic.
Which heuristic is better?

• \(h_2 \) dominates \(h_1 \). That is, for any node \(n \), \(h_2(n) \geq h_1(n) \).
• \(h_2 \) never expands more nodes than \(A^* \) using \(h_1 \) (except possibly for some nodes with \(f(n) = C^* \)).
• Better to use \(h_2 \) provided it doesn’t overestimate and its computation time isn’t too expensive.

(Recall that \(h_2 \) is also admissible)

Proof:
Every node with \(f(n) < C^* \) will surely be expanded, meaning every node with \(h(n) < C^* - g(n) \) will surely be expanded.
Since \(h_2 \) is at least as big as \(h_1 \) for all nodes, every node expanded with \(A^* \) using \(h_2 \) will also be expanded with \(A^* \) using \(h_1 \). But \(h_1 \) might expand other nodes as well.

<table>
<thead>
<tr>
<th>Depth</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>3644035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>59</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1301</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3056</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7276</td>
<td>676</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>18094</td>
<td>1259</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>39135</td>
<td>1681</td>
<td></td>
</tr>
</tbody>
</table>

From Russell and Norvig Figure 4.8 (Results averaged over 100 instances of the 8-puzzle for depths 2-24).

Inventing Admissible Heuristics

• Relaxed problem: a problem with fewer restrictions on the actions
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
• If we relax the rules so that a square can move anywhere, we get heuristic \(h_1 \)
• If we relax the rules to allow a square to move to any adjacent square, we get heuristic \(h_2 \)

What you should know

• Be able to run \(A^* \) by hand on a simple example
• Why it is important for a heuristic to be admissible and consistent
• Pros and cons of \(A^* \)
• How do come up with heuristics
• What if means for a heuristic function to dominate another heuristic function