Knowledge-based Agents

- Can represent knowledge
- And reason with this knowledge
- How is this different from the knowledge used by problem-specific agents?
 - More general
 - More flexible

Knowledge is definite

- Knowledge of logical agents is always definite
- That is, each proposition is entirely true or entirely false
- Agent may be agnostic about some propositions
- Logic doesn’t handle uncertainty well

Outline

1. Knowledge-based Agents
2. The Wumpus World
3. Logic

Knowledge-based Agents

Flexibility of knowledge-based agents:
- Accept new tasks in the form of explicitly described goals
- Achieve competence quickly by being told or learning new knowledge about the environment
- Adapt to changes in the environment by updating the relevant knowledge
The Knowledge Base (KB)

- A knowledge base is a set of “sentences”
- Each sentence is expressed in a knowledge representation language and represents some assertion about the world

Knowledge Base Example

Knowledge Base: Murderer wasn’t Colonel Mustard
Murderer wasn’t Miss Scarlett
Weapon wasn’t the Gun
Weapon wasn’t the Candlestick
Room wasn’t the Library

When you discover a new fact like “The murder room wasn’t the study”, you would TELL the KB
You can then ASK the KB what to ask next

Inference

- Inference: deriving new sentences from old ones
- Must obey fundamental requirement: when one ASKS a question of the knowledge base, answer should follow from what has been TELLed to the KB previously

A Generic Knowledge-based Agent

Input: Percept
Knowledge Base
Output: Action

Starts out with background knowledge
A Generic Knowledge-based Agent

Input: Percept

Knowledge Base

Output: Action

1. TELL the KB what it perceives
2. ASK the KB what action it should perform
3. TELL the KB that the action was executed

The Wumpus World

• Performance measure:
 – +1000 for picking up gold, -1000 for death (meeting a live wumpus or falling into a pit)
 – -1 for each action taken, -10 for using arrow

• Environment:
 – 4x4 grid of rooms
 – Agent starts in (1,1) and faces right
 – Geography determined at the start:
 • Gold and wumpus locations chosen randomly
 • Each square other than start can be a pit with probability 0.2

The Wumpus World

• Sensors:
 – Returns a 5-tuple of five symbols eg. [stench, breeze, glitter, bump, scream] (note that in this 5-tuple, all five things are present. We indicate absence with the value None)
 – In squares adjacent to the wumpus, agent perceives a stench
 – In squares adjacent to a pit, agent perceives a breeze
 – In squares containing gold, agent perceives a glitter
 – When agent walks into a wall, it perceives a bump
 – When wumpus is killed, it emits a woeful scream that is perceived anywhere

The Wumpus World

• Actuators:
 – Movement:
 • Agent can move forward
 • Turn 90 degrees left or right
 – Grab: pick up an object in same square
 – Shoot: fire arrow in straight line in the direction agent is facing

The Wumpus World

• Biggest challenge: Agent is ignorant of the configuration of the 4x4 world
• Needs logical reasoning of percepts in order to overcome this ignorance
• Note: retrieving gold may not be possible due to randomly generated location of pits
• Initial knowledge base contains:
 – Agent knows it is in [1,1]
 – Agent knows it is a safe square
The Wumpus World Environment Properties

- Fully or Partially observable?
- Deterministic or stochastic?
- Episodic or sequential?
- Static or dynamic?
- Discrete or continuous?
- Single agent or multiagent?

Wumpus World Example

1st percept is:
[None, None, None, None, None]
(Corresponding to [Stench, Breeze, Glitter, Bump, Scream])
Agent concludes squares [1,2], [2,1] are safe. We mark them with OK. A cautious agent will move only to a square that it knows is OK.

Agent now moves to [2,1]

Wumpus World Example

2nd percept is:
[None, Breeze, None, None, None]
Must be a pit at [2,2] or [3,1] or both. We mark this with a P?.
Only one square that is OK, so the agent goes back to [1,1] and then to [1,2]

Wumpus World Example

3rd percept is:
[Stench, None, None, None, None]
Wumpus must be nearby. Can’t be in [1,1] (by rules of the game) or [2,2] (otherwise agent would have detected a stench at [2,1])
Therefore, Wumpus must be in [1,3]. Indicate this by W!
Lack of breeze in [1,2] means no pit in [2,2], so pit must be in [3,1].

Wumpus World Example

Note the difficulty of this inference:
- Combines knowledge gained at different times and at different places.
- Relies on the lack of a percept to make one crucial step
At this point, the agent moves to [2,2].
Wumpus World Example

We’ll skip the agent’s state of knowledge at [2,2] and assume it goes to [2,3]. Agent detects a glitter in [2,3] so it grabs the gold and ends the game

Note: In each case where the agent draws a conclusion from the available information, that conclusion is guaranteed to be correct if the available information is correct

Logic

Logic must define:
1. Syntax of the representation language
 - Symbols, rules, legal configurations
2. Semantics of the representation language
 - Loosely speaking, this is the “meaning” of the sentence
 - Defines the truth of each sentence with respect to each possible world
 - Everything is either true or false, no in between

Models

- We will use the word model instead of “possible world”
- “m is a model of α” means that sentence α is true in model m
- Models are mathematical abstractions which fix the truth or falsehood of every relevant sentence
- Think of it as the possible assignments of values to the variables
 - E.g. the possible models for x + y = 4 are all possible assignments of numbers to x and y such that they add up to 4

Entailment

α |= β means α entails β i.e. β follows logically from α, where α and β are sentences

Mathematically, α |= β if and only if in every model in which α is true, β is also true.

Another way: if α is true, then β must also be true.

Entailment Applied to the Wumpus World

- Suppose the agent moves to [2,1]
- Agent knows there is nothing in [1,1] and a breeze in [2,1]
- These percepts, along with the agent’s knowledge of the rules of the wumpus world constitute the KB
- Given this KB, agent is interested if the adjacent squares [1,2], [2,2] and [3,1] contain pits.

Entailment Applied to the Wumpus World

2^8 = 8 possible models because [1,2], [2,2] and [3,1] can take each take values true or false that there is a pit there

The 3 models inside the line marked KB are those in which the KB is true
Let us consider the models that support the conclusion $\alpha_1 = "There is no pit in [1,2]."$. We draw a line marked with α_1 around these models.

In every model in which KB is true, α_1 is also true. Therefore KB $\models \alpha_1$.

Now let us consider the models that support the conclusion $\alpha_2 = "There is no pit in [2,2]."$. We draw a line marked with α_2 around these models.

In some models in which KB is true, α_2 is false. Therefore KB $\not\models \alpha_2$ and the agent cannot conclude that there is no pit in [2,2].

Logical inference

- Entailment can be applied to derive conclusions (we call this carrying out logical inference)
- Model checking: enumerates all possible models to check that α is true in all models in which KB is true
- If an inference algorithm i can derive α from the KB, we write KB $\vdash_i \alpha$
- The above is pronounced “α is derived from KB by i” or “i derives α from KB”

Soundness

- An inference algorithm that derives only entailed sentences is called sound or truth-preserving
- Soundness is a good thing!
- If an inference algorithm is unsound, you can make things up as it goes along and derive basically anything it wants to

Completeness

- An inference algorithm is complete if it can derive any sentence that is entailed
- For some KBs, the number of sentences can be infinite
- Can’t exhaustively check all of them, need to rely on proving completeness

In Summary

- Soundness: i is sound if whenever KB $\models \alpha$, it is also true that KB $\models_i \alpha$
- Completeness: i is complete if whenever KB $\models \alpha$, it is also true that KB $\vdash_i \alpha$
Correspondence to the Real World

If the KB is true in the real world, then any sentence α derived from the KB by a sound inference procedure is also true in the real world.

Grounding

- Defined as the connection, if any, between logical reasoning processes and the real environment in which the agent exists
- How do we know that the KB is true in the real world?
- Deep philosophical question
- We’ll respond with the following:
 - Rely on sensors to accurately perceive the world
 - Learning produces general rules (derived from perceptual experience). Learning can be fallible but it has the potential to fix its mistakes.

Things you should know

- Properties of a knowledge-based agent
- What a knowledge-base is
- What entailment and inference mean
- Desirable properties of inference algorithms such as soundness and completeness