CS 331: Artificial Intelligence
Uninformed Search

Real World Search Problems

Google™
Simpler Search Problems

Assumptions About Our Environment

- Static
- Observable
- Discrete
- Deterministic
- Single-agent
Search Problem Formulation

A search problem has 5 components:
1. A finite set of states \(S \)
2. A non-empty set of initial states \(I \subseteq S \)
3. A non-empty set of goal states \(G \subseteq S \)
4. A successor function \(\text{succ}(s) \) which takes a state \(s \) as input and returns as output the set of states you can reach from state \(s \) in one step.
5. A cost function \(\text{cost}(s,s') \) which returns the non-negative one-step cost of travelling from state \(s \) to \(s' \). The cost function is only defined if \(s' \) is a successor state of \(s \).

Example: Oregon

\[S = \{ \text{Coos Bay, Newport, Corvallis, Junction City, Eugene, Medford, Albany, Lebanon, Salem, Portland, McMinnville} \} \]
\[I = \{ \text{Corvallis} \} \]
\[G = \{ \text{Medford} \} \]
\[\text{Succ(Corvallis)} = \{ \text{Albany, Newport, McMinnville, Junction City} \} \]
\[\text{Cost}(s,s') = 1 \text{ for all transitions} \]
Results of a Search Problem

- **Solution**
 Path from initial state to goal state

- **Solution quality**
 Path cost (3 in this case)

- **Optimal solution**
 Lowest path cost among all solutions (In this case, we found the optimal solution)

Search Tree

Start with Initial State
Search Tree

Is initial state the goal?
- Yes, return solution
- No, apply Successor() function

Search Tree

Apply Successor() function

These nodes have not been expanded yet. Call them the fringe. We'll put them in a queue.
Now remove a node from the queue. If it’s a goal state, return the solution. Otherwise, call Successor() on it, and put the results in the queue. Repeat.

Things to note:
- Order in which you expand nodes (in this example, we took the first node in the queue)
- Avoid repeated states
Tree-Search Pseudocode

function Tree-Search(problem, fringe) returns a solution, or failure
fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(problem)(State[node]) then return Solution(node)
 fringe ← InsertAll(Expand(node, problem), fringe)
end loop

function Expand(node, problem) returns a set of nodes
successors ← the empty set
for each action, result in Successor-Fn(problem)(State[node]) do
 s ← a new NODE
 Parent-Node[s] ← node, Action[s] ← action, State[s] ← result
 Path-Cost[s] ← Path-Cost[node] + Step-Cost(node, action, s)
 Depth[s] ← Depth[node] + 1
 add s to successors
return successors

Note: Goal test happens after we grab a node off the queue.
Tree-Search Pseudocode

Why are these parent node backpointers are important?

Uninformed Search

- No info about states other than generating successors and recognizing goal states
- Later on we’ll talk about informed search – can tell if a non-goal state is more promising than another
Evaluating Uninformed Search

• Completeness
 Is the algorithm guaranteed to find a solution when there is one?
• Optimality
 Does it find the optimal solution?
• Time complexity
 How long does it take to find a solution?
• Space complexity
 How much memory is needed to perform the search

Complexity

1. Branching factor (b) – maximum number of successors of any node
2. Depth (d) of the shallowest goal node
3. Maximum length (m) of any path in the search space

Time Complexity: number of nodes generated during search
Space Complexity: maximum number of nodes stored in memory
Uninformed Search Algorithms

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative Deepening Depth-first Search
- Bidirectional search

Breadth-First Search

- Expand all nodes at a given depth before any nodes at the next level are expanded
- Implement with a FIFO queue
Breadth First Search Example

- Not yet reached
- Expanded nodes on current path
- On fringe but unexpanded
- Current node to be expanded
Evaluating BFS

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if step costs are identical</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b) = O(b^{d+1})$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^{d+1})$</td>
</tr>
</tbody>
</table>

Exponential time and space complexity make BFS impractical for all but the smallest problems.
Uniform-cost Search

• What if step costs are not equal?
• Recall that BFS expands the shallowest node
• Now we expand the node with the lowest path cost
• Uses priority queues

Note: Gets stuck if there is a zero-cost action leading back to the same state.
For completeness and optimality, we require the cost of every step to be $\geq \varepsilon$

Evaluating Uniform-cost Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite and step costs $\geq \varepsilon$ for small positive ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^{1+\text{floor}(C*/\varepsilon)})$ where C^* is the cost of the optimal solution</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^{1+\text{floor}(C*/\varepsilon)})$ where C^* is the cost of the optimal solution</td>
</tr>
</tbody>
</table>
Depth-first Search

• Expands the deepest node in the current fringe of the search tree
• Implemented with a LIFO queue
Depth-first Search Example

Evaluating Depth-first Search

Complete?
Optimal?
Time Complexity
Space Complexity
Evaluating Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>No (Might not terminate if it goes down an infinite path with no solutions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>No (Could expand a much longer path than the optimal one first)</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(bm)$</td>
</tr>
</tbody>
</table>

Depth-limited Search

- Solves infinite path problem by using predetermined depth limit l
- Nodes at depth l are treated as if they have no successors
- Can use knowledge of the problem to determine l (but in general you don’t know this in advance)
Evaluating Depth-limited Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>No (If shallowest goal node beyond depth limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b^l)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>O(b^l)</td>
</tr>
</tbody>
</table>

Iterative Deepening Depth-first Search

- Do DFS with depth limit 0, 1, 2, … until a goal is found
- Combines benefits of both DFS and BFS
Iterative Deepening Depth-first Search Example

Limit = 0

Limit = 1

Limit = 2

IDDFS Example

Limit = 3
IDDFS Example

Limit = 3 (Continued)

Evaluating Iterative Deepening Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td></td>
</tr>
<tr>
<td>Time Complexity</td>
<td></td>
</tr>
<tr>
<td>Space Complexity</td>
<td></td>
</tr>
</tbody>
</table>
Evaluating Iterative Deepening
Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if the path cost is a nondecreasing function of the depth of the node</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b^d)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>O(bd)</td>
</tr>
</tbody>
</table>

Isn’t Iterative Deepening Wasteful?

- Actually, no! Most of the nodes are at the bottom level, doesn’t matter that upper levels are generated multiple times.
- To see this, add up the 4th column below:

<table>
<thead>
<tr>
<th>Depth</th>
<th># of nodes</th>
<th># of times generated</th>
<th>Total # of nodes generated at depth d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>d</td>
<td>(d)b</td>
</tr>
<tr>
<td>2</td>
<td>b^2</td>
<td>d-1</td>
<td>(d-1)b^2</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>d</td>
<td>b^d</td>
<td>1</td>
<td>(1)b^d</td>
</tr>
</tbody>
</table>
Is Iterative Deepening Wasteful?

Total # of nodes generated by iterative deepening:

\[(d)b + (d-1)b^2 + \ldots + (1)b^d = \Theta(b^d)\]

Total # of nodes generated by BFS:

\[b + b^2 + \ldots + b^d + (b^{d+1} - b) = \Theta(b^{d+1})\]

In general, iterative deepening is the preferred uninformed search method when there is a large search space and the depth of the solution is not known.

Bidirectional Search

- Run one search forward from the initial state
- Run another search backward from the goal
- Stop when the two searches meet in the middle
Bidirectional Search

- Needs an efficiently computable Predecessor() function
- What if there are several goal states?
 - Create a new dummy goal state whose predecessors are the actual goal states
- Difficult when the goal is an abstract description like “no queen attacks another queen”

Evaluating Bidirectional Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite and both directions use BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if the step costs are all identical and both directions use BFS</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b^{d/2})</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>O(b^{d/2}) (At least one search tree must be kept in memory for the membership check)</td>
</tr>
</tbody>
</table>
Avoiding Repeated States

- Tradeoff between space and time!
- Need a closed list which stores every expanded node (memory requirements could make search infeasible)
- If the current node matches a node on the closed list, discard it (i.e. discard the newly discovered path)
- We’ll refer to this algorithm as GRAPH-SEARCH
- Is this optimal? Only for uniform-cost search or breadth-first search with constant step costs.

GRAPH-SEARCH

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
closed := an empty set
fringe := INSERT(Make-NODE(INITIAL-STATE[problem]), fringe)
loop do
 if fringe is empty then return failure
 node := REMOVE-FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe := INSERT-ALL(EXPAND(node, problem), fringe)
Things You Should Know

• How to formalize a search problem
• How BFS, UCS, DFS, DLS, IDS and Bidirectional search work
• Whether the above searches are complete and optimal plus their time and space complexity
• The pros and cons of the above searches