CS 331: Artificial Intelligence
Uninformed Search

Real World Search Problems

Simpler Search Problems

Assumptions About Our Environment
- Static
- Observable
- Discrete
- Deterministic
- Single-agent

Search Problem Formulation
A search problem has 5 components:
1. A finite set of states \(S \)
2. A non-empty set of initial states \(I \subseteq S \)
3. A non-empty set of goal states \(G \subseteq S \)
4. A successor function \(\text{suc}(s) \) which takes a state \(s \) as input and returns as output the set of states you can reach from state \(s \) in one step.
5. A cost function \(\text{cost}(s, s') \) which returns the non-negative one-step cost of travelling from state \(s \) to \(s' \). The cost function is only defined if \(s' \) is a successor state of \(s \).

Example: Oregon
\[
S = \{\text{Coos Bay, Newport, Corvallis, Junction City, Eugene, Medford, Albany, Lebanon, Salem, Portland, McMinnville}\}
\]
\[
I = \{\text{Corvallis}\}
\]
\[
G = \{\text{Medford}\}
\]
\[
\text{Succ}(\text{Corvallis}) = \{\text{Albany, Newport, McMinnville, Junction City}\}
\]
\[
\text{Cost}(s, s') = 1 \text{ for all transitions}
\]
Results of a Search Problem

- Solution
 Path from initial state to goal state

 \[
 \text{Corvallis} \rightarrow \text{Junction City} \rightarrow \text{Eugene} \rightarrow \text{Medford}
 \]

- Solution quality
 Path cost (3 in this case)

- Optimal solution
 Lowest path cost among all solutions (In this case, we found the optimal solution)

Search Tree

Start with Initial State

Is initial state the goal?
- Yes, return solution
- No, apply Successor() function

These nodes have not been expanded yet. Call them the fringe. We'll put them in a queue.

Now remove a node from the queue. If it's a goal state, return the solution. Otherwise, call Successor() on it, and put the results in the queue. Repeat.

Things to note:
- Order in which you expand nodes (in this example, we took the first node in the queue)
- Avoid repeated states
Tree-Search Pseudocode

function TREE-SEARCH(problem, fringe) returns a solution or failure
 fringe ← Insert(Make-Node(INITIAL-STATE(problem)), fringe)
 loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test(node(problem)) then return Solution(node)
 fringe ← Insert(All-Expand(node, problem), fringe)
 end

function Expand(node, problem) returns a set of nodes
 successors ← the empty set
 for each action, result in SUCCESSOR-FUNCTION(problem)(STATE(node)) do
 x ← a new node
 Parent-Node(x) ← node
 Action(x) ← action
 State(x) ← result
 Path-Cost(x) ← Path-Cost(node) + STEP-COST(node, action, x)
 Depth(x) ← Depth(node) + 1
 add x to successors
 end
 return successors

Evaluating Uninformed Search

• Completeness
 Is the algorithm guaranteed to find a solution when there is one?
• Optimality
 Does it find the optimal solution?
• Time complexity
 How long does it take to find a solution?
• Space complexity
 How much memory is needed to perform the search

Why are these parent node backpointers important?

Note: Goal test happens after we grab a node off the queue.

Uninformed Search

• No info about states other than generating successors and recognizing goal states
• Later on we’ll talk about informed search – can tell if a non-goal state is more promising than another

Complexity

1. Branching factor (b) – maximum number of successors of any node
2. Depth (d) of the shallowest goal node
3. Maximum length (m) of any path in the search space

Time Complexity: number of nodes generated during search
Space Complexity: maximum number of nodes stored in memory
Uninformed Search Algorithms

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative Deepening Depth-first Search
- Bidirectional search

Breadth-First Search

- Expand all nodes at a given depth before any nodes at the next level are expanded
- Implement with a FIFO queue

Breadth First Search Example

Evaluating BFS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b^d+1)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>O(b^d+1)</td>
</tr>
</tbody>
</table>

Exponential time and space complexity make BFS impractical for all but the smallest problems.
Uniform-cost Search

- What if step costs are not equal?
- Recall that BFS expands the shallowest node
- Now we expand the node with the lowest path cost
- Uses priority queues

Note: Gets stuck if there is a zero-cost action leading back to the same state. For completeness and optimality, we require the cost of every step to be ≥ ε.

Evaluating Uniform-cost Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite and step costs ≥ ε for small positive ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b1+√ln(C*)) where C* is the cost of the optimal solution</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>O(b1+√ln(C*)) where C* is the cost of the optimal solution</td>
</tr>
</tbody>
</table>

Depth-first Search

- Expands the deepest node in the current fringe of the search tree
- Implemented with a LIFO queue

Depth-first Search Example

Complete?

Optimal?

Time Complexity

Space Complexity

Evaluating Depth-first Search
Evaluating Depth-first Search

Complete?	No (Might not terminate if it goes down an infinite path with no solutions)
Optimal?	No (Could expand a much longer path than the optimal one first)
Time Complexity	$O(b^m)$
Space Complexity	$O(bm)$

Depth-limited Search

- Solves infinite path problem by using predetermined depth limit l
- Nodes at depth l are treated as if they have no successors
- Can use knowledge of the problem to determine l (but in general you don’t know this in advance)

Evaluating Depth-limited Search

Complete?	No (If shallowest goal node beyond depth limit)
Optimal?	No (If depth limit > depth of shallowest goal node and we expand a much longer path than the optimal one first)
Time Complexity	$O(b^l)$
Space Complexity	$O(b/l)$

Iterative Deepening Depth-first Search

- Do DFS with depth limit 0, 1, 2, … until a goal is found
- Combines benefits of both DFS and BFS

Iterative Deepening Depth-first Search Example

IDDFS Example
Evaluating Iterative Deepening
Depth-first Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if the path cost is a nondecreasing function of the depth of the node</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b^d)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>O(bd)</td>
</tr>
</tbody>
</table>

Isn’t Iterative Deepening Wasteful?

• Actually, no! Most of the nodes are at the bottom level, doesn’t matter that upper levels are generated multiple times.
• To see this, add up the 4th column below:

<table>
<thead>
<tr>
<th>Depth</th>
<th># of nodes</th>
<th># of times generated</th>
<th>Total # of nodes generated at depth d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>d</td>
<td>(d)b</td>
</tr>
<tr>
<td>2</td>
<td>b^2</td>
<td>d-1</td>
<td>(d-1)b^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>b^d</td>
<td>1</td>
<td>(b^d)</td>
</tr>
</tbody>
</table>

In general, iterative deepening is the preferred uninformed search method when there is a large search space and the depth of the solution is not known.

Bidirectional Search

• Run one search forward from the initial state
• Run another search backward from the goal
• Stop when the two searches meet in the middle
Bidirectional Search

- Needs an efficiently computable Predecessor() function
- What if there are several goal states?
 - Create a new dummy goal state whose predecessors are the actual goal states
- Difficult when the goal is an abstract description like “no queen attacks another queen”

Evaluating Bidirectional Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes provided branching factor is finite and both directions use BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if the step costs are all identical and both directions use BFS</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>$O(b^{d/2})$</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>$O(b^{d/2})$ (At least one search tree must be kept in memory for the membership check)</td>
</tr>
</tbody>
</table>

Avoiding Repeated States

- Tradeoff between space and time!
- Need a closed list which stores every expanded node (memory requirements could make search infeasible)
- If the current node matches a node on the closed list, discard it (ie. discard the newly discovered path)
- We’ll refer to this algorithm as GRAPH-SEARCH
- Is this optimal? Only for uniform-cost search or breadth-first search with constant step costs.

GRAPH-SEARCH

```plaintext
Function: GRAPH-SEARCH(problem, fringe) returns a solution, or failure
  closed ← an empty set
  fringe ← INSERT(Make-Node(INITIAL-STATE(problem)), fringe)
  loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE(node)) then return SOLUTION(node)
    if STATE(node) is not in closed then
      add STATE(node) to closed
      fringe ← INSERT_ALL(Expand(node, problem), fringe)
```

Things You Should Know

- How to formalize a search problem
- How BFS, UCS, DFS, DLS, IDS and Bidirectional search work
- Whether the above searches are complete and optimal plus their time and space complexity
- The pros and cons of the above searches