1. Consider the experiment of placing three distinguishable particles a, b, and c into three cells. Examples of sample points are \(\omega_1 = (abc | - | -) \), \(\omega_2 = (ab| c | -) \), etc.
 a. Write down the sample space \(\Omega \).
 b. Define events as:
 - \(A \) = multiple particles occupy a cell
 - \(B \) = the last cell is not empty
 - \(C \) = \(A \) occurs but not \(B \).
 How many sample points are there in events \(A \), \(B \), and \(C \) respectively?
 c. Assuming equal probability for each outcome, calculate the probability of events \(A \), \(B \), and \(C \).

2. A complex number is selected uniformly at random in the sample space \(S = \{ c = a + jb : |a| \leq 1, \ |b| \leq 1 \} \), where \(a \) and \(b \) are the real and image part of the complex number respectively. Let the events \(A = \{ a \geq 0 \} \), \(B = \{ 0.25 \leq |b - 0.25| \leq 0.75 \} \) and \(C = \{ |c| = \sqrt{a^2 + b^2} \leq 1 \} \). Compute:
 a. \(P(A) \)
 b. \(P(B) \)
 c. \(P(C) \)
 d. \(P(A \cap B) \)
 e. \(P(A \cup C) \)
 f. \(P(A \cap B \cap C) \)

3. Let \(A \), \(B \), and \(C \) be events in sample space \(S \).
 a. Using axioms and laws of probability prove that \(P(A \cap B \cap C) \leq P(A \cup B \cup C) \leq P(A) + P(B) + P(C) \).
 b. Using Venn diagrams prove the same relationship.

4. A number is selected uniformly at random from the set of integers \(\{-100, -99, \ldots, -1, 0, 1, \ldots, 99, 100\} \). What is the probability that it is divisible by 6 or 7, but neither by 2 nor by 5?