CS 331: Artificial Intelligence
Informed Search

Informed Search
• How can we make search smarter?
• Use problem-specific knowledge beyond the definition of the problem itself
• Specifically, incorporate knowledge of how good a non-goal state is

Best-First Search
• Node selected for expansion based on an evaluation function $f(n)$. i.e. expand the node that appears to be the best
• Node with lowest evaluation is selected for expansion
• Uses a priority queue
• We’ll talk about Greedy Best-First Search and A* Search

Heuristic Function
• $h(n) =$ estimated cost of the cheapest path from node n to a goal node
• $h($goal node$) = 0$
• Contains additional knowledge of the problem

Greedy Best-First Search
• Expands the node that is closest to the goal
• $f(n) = h(n)$

Greedy Best-First Search Example
This is the “actual” driving distance in miles
Straight line distance (as the crow flies) to Wilsonville in miles

<table>
<thead>
<tr>
<th>Location</th>
<th>Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corvallis</td>
<td>56</td>
</tr>
<tr>
<td>Albany</td>
<td>49</td>
</tr>
<tr>
<td>Salem</td>
<td>28</td>
</tr>
<tr>
<td>Portland</td>
<td>17</td>
</tr>
<tr>
<td>McMinnville</td>
<td>18</td>
</tr>
</tbody>
</table>
Greedy Best-First Search Example

Corvallis 56
Albany 49
Salem 28
Portland 17
McMinnville 18

Corvallis

McMinnville

Albany

Portland

Wilsonville

Greedy Best-First Search Example

Corvallis 56
Albany 49
Salem 28
Portland 17
McMinnville 18

Corvallis

McMinnville

Albany

Portland

Wilsonville

Greedy Best-First Search Example

Greedy Best-First Search Example

Corvallis

McMinnville

Albany

Portland

Wilsonville

Corvallis

McMinnville

Albany

Portland

Wilsonville

Greedy Best-First Search Example

Greedy Best-First Search Example

Corvallis 56
Albany 49
Salem 28
Portland 17
McMinnville 18

Corvallis

McMinnville

Albany

Portland

Wilsonville

Greedy Best-First Search Example

Greedy Best-First Search Example

Corvallis 56
Albany 49
Salem 28
Portland 17
McMinnville 18

Corvallis

McMinnville

Albany

Portland

Wilsonville

Greedy Best-First Search Example

Greedy Best-First Search Example

Corvallis 56
Albany 49
Salem 28
Portland 17
McMinnville 18

Corvallis

McMinnville

Albany

Portland

Wilsonville

Greedy Best-First Search Example

Greedy Best-First Search Example

Corvallis 56
Albany 49
Salem 28
Portland 17
McMinnville 18

Corvallis

McMinnville

Albany

Portland

Wilsonville

But the route below is much shorter than the route found by Greedy Best-First Search!

Corvallis → Albany → Salem → Wilsonville = 67 miles

Corvallis →McMinnville→ Wilsonville = 74 miles

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite path)
Optimal? No
Time Complexity
Space Complexity

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite path)
Optimal? No
Time Complexity
Space Complexity

Greedy Best-First search results in lots of dead ends which leads to unnecessary nodes being expanded
Evaluating Greedy Best-First Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>No (could start down an infinite path)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>No</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>O(b^m)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td></td>
</tr>
</tbody>
</table>

Greedy Best-First search results in lots of dead ends which leads to unnecessary nodes being expanded.

A* Search

- A much better alternative to greedy best-first search
- Evaluation function for A* is:
 \[f(n) = g(n) + h(n) \]
 where \(g(n) \) = path cost from the start node to \(n \)
- If \(h(n) \) satisfies certain conditions, A* search is optimal and complete!

Admissible Heuristics

- A* is optimal if \(h(n) \) is an admissible heuristic
- An admissible heuristic is one that never overestimates the cost to reach the goal
- Admissible heuristic = optimistic
- Straight line distance was an admissible heuristic

Greedy Best-First Search Example

A* Search Example

A* Search Example

<table>
<thead>
<tr>
<th>Straight line distance (as the crow flies) to Wilsonville in miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corvallis</td>
</tr>
<tr>
<td>Albany</td>
</tr>
<tr>
<td>Salem</td>
</tr>
<tr>
<td>Portland</td>
</tr>
<tr>
<td>McMinnville</td>
</tr>
</tbody>
</table>

Straight line distance (as the crow flies) to Wilsonville in miles

Corvallis	56
Albany	49
Salem	28
Portland	17
McMinnville	18
Proof that A* using TREE-SEARCH is optimal if h(n) is admissible:

- Suppose A* returns a suboptimal goal node G_2.
- G_2 must be the least cost node in the fringe. Let the cost of optimal solution be C^*.
- Because G_2 is suboptimal:
 \[f(G_2) = g(G_2) + h(G_2) = g(G_2) > C^* \]
- Now consider a fringe node n on an optimal solution path to the goal G.
- If $h(n)$ is admissible then:
 \[f(n) = g(n) + h(n) \leq C^* \]
- We have shown that $f(n) \leq C^* < f(G_2)$, so G_2 will not get expanded before n. Hence A* must return an optimal solution.

What about search graphs (more than one path to a node)?

- What if we expand a state we’ve already seen?
- Suppose we use the GRAPH-SEARCH solution and not expand repeated nodes
- Could discard the optimal path if it’s not the first one generated
- One simple solution: ensure optimal path to any repeated state is always the first one followed (like in Uniform-cost search)
- Requires an extra requirement on $h(n)$ called consistency (or monotonicity)
Consistency

- A heuristic is consistent if, for every node n and every successor n’ of n generated by any action a:
 \[h(n) \leq c(n,a,n’) + h(n’) \]
 - Step cost of going from n to n’
 - by doing action a

- A form of the triangle inequality – each side of the triangle cannot be longer than the sum of the two sides

\[\begin{align*}
 c(n,a,n’) &+ h(n’) \\
 h(n) &\leq c(n,a,n’) + h(n’) \\
\end{align*} \]

- Every consistent heuristic is also admissible
- A* using GRAPH-SEARCH is optimal if h(n) is consistent
- Most admissible heuristics are also consistent

\[h(n) \leq c(n,a,n’) + h(n’) \]

Consistency

- If h(n) is consistent, then the values of f(n) along any path are nondecreasing
- Proof:
 - Suppose n’ is a successor of n.
 - Then g(n’)=g(n) + c(n,a,n’)
 - \[f(n’) = g(n’) + h(n’) \]
 - \[f(n’) \geq g(n) + h(n) \]
 - Thus, the sequence of nodes expanded by A* is in nondecreasing order of f(n)
 - First goal selected for expansion must be an optimal solution since all later nodes will be at least as expensive

A* is Optimally Efficient

- Among optimal algorithms that expand search paths from the root, A* is optimally efficient for any given heuristic function
- Optimally efficient: no other optimal algorithm is guaranteed to expand fewer nodes than A*
 - Fine print: except A* might possibly expand more nodes with f(n) = C* where C* is the cost of the optimal path – tie-breaking issues
- Any algorithm that does not expand all nodes with f(n) < C* runs the risk of missing the optimal solution

Evaluating A* Search

With a consistent heuristic, A* is complete, optimal and optimally efficient. Could this be the answer to our searching problems?

The Dark Side of A*…

- Time complexity is exponential (although it can be reduced significantly with a good heuristic)
- The really bad news: space complexity is exponential (usually need to store all generated states). Typically runs out of space on large-scale problems.
Summary of A* Search

<table>
<thead>
<tr>
<th>Complete?</th>
<th>Yes if (h(n)) is consistent, (b) is finite, and all step costs exceed some finite (\varepsilon). (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal?</td>
<td>Yes if (h(n)) is consistent and admissible</td>
</tr>
<tr>
<td>Time Complexity</td>
<td>(O(b^d)) (In the worst case but a good heuristic can reduce this significantly)</td>
</tr>
<tr>
<td>Space Complexity</td>
<td>(O(b^d)) – Needs (O(\text{number of states})), will run out of memory for large search spaces</td>
</tr>
</tbody>
</table>

\(^1\) Since \(f(n) \) is nondecreasing, we must eventually hit an \(f(n) = \text{cost of the path to a goal state} \)

Iterative Deepening A*

- Use iterative deepening trick to reduce memory requirements for A*
- In each iteration do a “cost-limited” depth first search.
 - Cutoff is based on the f-cost (\(g+h \)) rather than the depth
- After each iteration, the new cutoff is the smallest f-cost that exceeded the cutoff in the previous iteration

Complete, Optimal but more costly than A* and can take a while to run with real-valued costs

Examples of heuristic functions

The 8-puzzle

<table>
<thead>
<tr>
<th>Start State</th>
<th>End State</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2 4</td>
<td>1 2 3</td>
</tr>
<tr>
<td>5 6</td>
<td>4 5 3</td>
</tr>
<tr>
<td>8 3 1</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

Heuristic #1: \(h_1 = \text{number of misplaced tiles} \) e.g. start state has 8 misplaced tiles. This is an admissible heuristic
Examples of heuristic functions

The 8-puzzle

<table>
<thead>
<tr>
<th>Start State</th>
<th>End State</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2 4 5 6 8 3 1</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

Heuristic #2: $h_2 = \text{total Manhattan distance (sum of horizontal and vertical moves, no diagonal moves)}$. Start state is $3+1+2+3+2+2+3=18$ moves away from the end state. This is also an admissible heuristic.

Which heuristic is better?

Inventing Admissible Heuristics

- Relaxed problem: a problem with fewer restrictions on the actions
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If we relax the rules so that a square can move anywhere, we get heuristic h_1
- If we relax the rules to allow a square to move to any adjacent square, we get heuristic h_2

Which heuristic is better?

- h_2 dominates h_1. That is, for any node n, $h_2(n) \geq h_1(n)$.
- h_2 never expands more nodes than A^* using h_1 (except possibly for some nodes with $f(n) = C^*$)
- Better to use h_2 provided it doesn’t overestimate and its computation time isn’t too expensive.

(Proof:
Every node with $f(n) < C^*$ will surely be expanded, meaning every node with $h(n) < C^* - g(n)$ will surely be expanded
Since h_2 is at least as big as h_1 for all nodes, every node expanded with A^* using h_2 will also be expanded with A^* using h_1. But h_1 might expand other nodes as well.)

<table>
<thead>
<tr>
<th>Depth</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>12</td>
<td>364035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>519</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>16</td>
<td>1591</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>18</td>
<td>3056</td>
<td>363</td>
<td>363</td>
</tr>
<tr>
<td>20</td>
<td>7276</td>
<td>676</td>
<td>676</td>
</tr>
<tr>
<td>22</td>
<td>18094</td>
<td>1219</td>
<td>1219</td>
</tr>
<tr>
<td>24</td>
<td>39135</td>
<td>1641</td>
<td>1641</td>
</tr>
</tbody>
</table>

From Russell and Norvig Figure 4.8 (Results averaged over 100 instances of the 8-puzzle for depths 2-24).

What you should know

- Be able to run A^* by hand on a simple example
- Why it is important for a heuristic to be admissible and consistent
- Pros and cons of A^*
- How do you come up with heuristics
- What it means for a heuristic function to dominate another heuristic function