Lecture 16
Field-Effect Transistors 1
Schroder: Chapters 2, 4, 6

Announcements

Homework 4/6:
• Is online now.
• Due Monday May 21st at 10:00am.
• I will return it the following Monday (28th May).
Other Sources of Information

- It turns out that the information on FETs in Schroder is not well organized. It is spread across multiple chapters.
- There are some other good sources of information on this subject if you are interested:
 - Review Articles:
 - https://pubs.acs.org/doi/abs/10.1021/cr0501543
 - https://pubs.acs.org/doi/abs/10.1021/cm049391x
 - Books:
 - Course
 - ECE599 – Thin Film Electronics, John Labram, Fall 2018.

Lecture 16

- Introduction to Transistors.
- Operating Principles of FETs.
- Carrier Types.
- Combining Transistors.
Introduction to Transistors

What is a Transistor?

• 3-Terminal Electronic switch.
• Generally two symbols are used.
• Used to control flow of current between two terminals via a third terminal.

We will focus on FETs

Bipolar Junction Transistor

Field-Effect Transistor (FET)
The First Transistor

- Germanium was used in first transistor.
- Bardeen Brattain Shockley in 1947.[1]
- Bell labs.

Modern IC Development

Sand to Ingot Wafer Dicing

https://www.youtube.com/watch?v=d9SWNLZvA8g
Modern IC Development

Photolithography Ion Implantation

https://www.youtube.com/watch?v=d9SWNLZvA8g

Modern IC Development

Etching Deposition

https://www.youtube.com/watch?v=d9SWNLZvA8g
Modern IC Development

Electrodeposition → CMP

https://www.youtube.com/watch?v=d9SWNLZvA8g

Modern IC Development

Circuit Design → Packaging

https://www.youtube.com/watch?v=d9SWNLZvA8g
Moore’s Law

- Suggested in the 1960’s by Intel’s founder George Moore.
- The number of transistors that can inexpensively fit onto a single integrated circuit will double every 24 months.\[1\]
- Today transistors can be purchased at a cost of 10^{-7} USD/transistor when part of integrated circuit.

Moore’s Law

- Remarkably, it has held up for 40 years.
Moore’s Law

- This has been driven by reducing feature size:

![Interconnects](image)

Size of the Industry

- Top 10 Semiconductor Vendors by Revenue, Worldwide, 2015 (Millions of Dollars):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Intel</td>
<td>52,331</td>
<td>51,709</td>
<td>-1.2</td>
<td>15.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Samsung Electronics</td>
<td>34,742</td>
<td>38,855</td>
<td>11.8</td>
<td>11.6</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>SK Hynix</td>
<td>15,997</td>
<td>16,494</td>
<td>3.1</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Qualcomm</td>
<td>19,291</td>
<td>19,936</td>
<td>-1.74</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Micron Technology</td>
<td>16,278</td>
<td>14,448</td>
<td>-11.2</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Texas Instruments</td>
<td>11,538</td>
<td>11,533</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Toshiba</td>
<td>10,665</td>
<td>9,622</td>
<td>-9.8</td>
<td>2.9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Broadcom</td>
<td>8,428</td>
<td>8,419</td>
<td>0.1</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>STMicroelectronics</td>
<td>7,376</td>
<td>6,890</td>
<td>-6.6</td>
<td>2.1</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>Infineon Technologies</td>
<td>5,693</td>
<td>6,630</td>
<td>16.5</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>157,992</td>
<td>153,182</td>
<td>-3</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>340,331</td>
<td>333,718</td>
<td>-1.9</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

http://www.gartner.com/newsroom/id/3182843
Operating Principles of FETs

Water Analogy

• Consider an analogy of water flowing in pipes.

[Diagram showing water analogy with nodes labeled Source, Drain, Flow Meter, Gate, Source-Drain Flow, Gate Pressure]
Water Analogy

- Consider an analogy of water flowing in pipes.

![Diagram of water analogy with labels: Source, Drain, Flow Meter, Gate, Pressure, and Flow Drain.]

ECE / ChE 613 – Electronic Materials Characterization
Spring 2018 - John Labram

19/72
Water Analogy

• Consider an analogy of water flowing in pipes.

Source - Drain Flow
Gate Pressure
Flow Meter

Source

ECE / ChE 613 – Electronic Materials Characterization
Spring 2018 - John Labram
Electrical Behavior

- A transistor can be considered to behave in a similar way:

![Diagram of transistor with labels for Gate Voltage, Drain Voltage, and Source-Drain Current.]}
Electrical Behavior

• A transistor can be considered to behave in a similar way:

Gate Voltage

Drain Voltage

Source-Drain Current

Gate Voltage

Ammeter

Electrical Behavior

• A transistor can be considered to behave in a similar way:

Gate Voltage

Drain Voltage

Source-Drain Current

Gate Voltage

Ammeter
Electrical Behavior

- Real transistors do not show this ideal behavior in reality:

![Graph showing the relationship between gate voltage and drain current for two different drain voltages.]

Structure of FETs

- A field effect transistor (FET) consists of three metal terminals, a semiconducting channel and a insulating dielectric.

- Source (S) and drain (D) electrodes are (normally) symmetric and in direct contact with the semiconducting channel.

- Insulating dielectric separates semiconductor from 3rd (gate) terminal.
Structure of FETs

- A wide range of FET structures exist.

Bottom-Gate, Top-Contact
- semiconductor
- dielectric
- metal (gate)

Bottom-Gate, Bottom-Contact
- semiconductor
- dielectric
- metal (gate)

Top-Gate, Bottom-Contact
- dielectric
- metal (gate)
- substrate (insulator)

Notice no dielectric

Structure of FETs

- A wide range of FET structures exist.

MESFET
- gate
- semiconductor
- substrate (insulator)

Inversion mode FETs
- gate
- semiconductor
- substrate (insulator)

Fin-FETs
- gate
- semiconductor
- substrate (insulator)
Operating Principles of FETs

- For our purposes we will consider a Bottom-Gate, Top-Contact FET.
- The principles discussed are general.
- As are the models we discuss next lecture.

Typically source electrode is grounded, voltages are applied to the drain and gate electrodes.
Operating Principles of FETs

- First, let’s consider structure under source electrode.

![Diagram showing the structure of a FET with labels for source, drain, semiconductor, dielectric, and gate.]

Conduction Band

Valence Band

ECE / ChE 613 – Electronic Materials Characterization
Spring 2018 - John Labram

33/72
Operating Principles of FETs

• First, let’s consider the structure under the source electrode.

Conduction Band

Valence Band

Source

Semiconductor

Dielectric

Metal

eV_G

$+$V_G

Operating Principles of FETs

• Typically, the source electrode is grounded, voltages are applied to the drain and gate electrodes.
Operating Principles of FETs
• Application of gate voltage leads to injection of electrons into semiconductor, increasing conductivity.

Operating Principles of FETs
• Application of drain voltage then leads to a flow of electrons between the source and drain electrodes.
Operating Principles of FETs

• As V_D increases relative to V_G, the field rotates and the distribution of accumulated charges changes.

Operating Principles of FETs

• As the distribution becomes inhomogeneous, relationship between I_D and V_D becomes non-linear.
Operating Principles of FETs

• Eventually channel becomes “pinched off” and no carriers are present adjacent to drain electrode.

This region has very high resistance

Source-Drain Current (I_D) vs Drain Voltage (V_D)

Operating Principles of FETs

• Pinched-off point moves towards center of channel.
Operating Principles of FETs

- Further increasing V_D will not substantially increase I_D but leads to an expansion of the depletion region.

Output Characteristics

- Holding gate voltage constant and sweeping drain voltage.

Source-Drain Current (I_D)

Drain Voltage (V_D)

Saturation regime

Linear Regime

Semiconductor

Dielectric

Metal (Gate)

Drain Voltage (V_D)

Source-Drain Current (I_D)

Gate Voltage (V_G)
Transfer Characteristics

• Holding drain voltage constant and sweeping gate voltage.

Carrier Types
Polarity of Transistors

- Unlike materials, the type of transistor is determined by the relative position of conduction and valence bands relative to work function of electrodes.

“N-Type”

“P-Type”

Gate Voltage

Gate Voltage

N-Type Transistors

- N-type transistors transport electrons but not holes.
P-Type Transistors

- P-type transistors transport holes but not electrons.

![Diagram of P-type transistor]

Ambipolar Transistors

- Ambipolar (sometimes called bipolar) transistors are unique in that they can inject and transport both holes and electrons, under the correct biasing conditions.

![Diagram of ambipolar transistor]
Combining Transistors

• We can consider transistors as voltage-controlled resistors. E.g. for an n-type transistor:

 - **Negative Voltage**
 - High Resistance
 - Gate Voltage
 - Low Resistance
 - +V

 - **Zero Voltage**
 - High Resistance
 - Gate Voltage
 - +V

 - **Positive Voltage**
 - Low Resistance
 - Gate Voltage
 - +V
Combining Transistors

- We can consider the below circuit as a potential divider.

\[V_{DD} \quad V_{in} \quad V_{out} \quad V_{DD} \quad V_{out} \]

\[P\text{-Type} \quad N\text{-Type} \]

\[V_{in} \quad V_{out} \quad V_{out} \]

If \(V_{DD} = 5V \), \(V_{in} = 0V \). What is \(V_{out} \)?
Combining Transistors

- Start by looking at the n-type transistor.

\[V_{DD} \]
\[+5V \]
\[V_{in} \]
\[0V \]
\[P-Type \]
\[N-Type \]
\[V_{out} \]

Combining Transistors

- Consider the transfer-curve for this FET.

\[V_{DD} \]
\[+5V \]
\[V_{in} \]
\[0V \]
\[P-Type \]
\[N-Type \]
\[V_{out} \]
\[I_D \]
\[0V \]
\[Gate Voltage \]
Combining Transistors

- If $V_{DD} = 5V$, $V_{in} = 0V$. What is V_{out}?

Since, under these biasing conditions the FET is off, we can consider this FET as a break.

Combining Transistors

- Now look at the p-type transistor.
Combining Transistors

• Since potentials are relative we can instead describe the FET in a more recognizable form.

\[V_{DD} \]
\[+5V \]
\[V_{in} \]
\[0V \]
\[+5V \]
\[V_{out} \]
\[N-Type \]
\[P-Type \]

\[P-Type \]
\[-5V \]

Combining Transistors

• Consider the transfer-curve for this FET.

\[V_{DD} \]
\[+5V \]
\[V_{in} \]
\[0V \]
\[+5V \]
\[V_{out} \]
\[N-Type \]
\[P-Type \]
\[I_D \]
\[-5V \]

Gate Voltage
Combining Transistors

• If \(V_{DD} = 5V, V_{in} = 0V \). What is \(V_{out} \)?

Under these biasing conditions, we can consider this FET as a wire.

\[
\begin{align*}
V_{DD} & = +5V \\
V_{in} & = 0V \\
V_{out} & = +5V
\end{align*}
\]

Combining Transistors

• Now, if \(V_{DD} = 5V, V_{in} = +5V \). What is \(V_{out} \)?

\[
\begin{align*}
V_{DD} & = +5V \\
V_{in} & = +5V \\
V_{out} & = +5V
\end{align*}
\]
Combining Transistors

- Start with our n-type transistor again:

- Again, consider the transfer-curve under these biases.
Combining Transistors

• Now, if $V_{DD} = 5V$, $V_{in} = +5V$. What is V_{out}?

 In this case our n-type FET is on, so we model it as a piece of wire.

Combining Transistors

• Finally, consider our p-type transistor again:
Combining Transistors
• Again, since the difference between source and gate are zero we can re-draw this:

\[V_{DD} \]

\[0V \]

\[V_{in} \]

\[+5V \]

\[V_{out} \]

\[+5V \]

\[N-Type \]

\[P-Type \]

Combining Transistors
• We can now draw the p-type transfer curve:

\[V_{DD} \]

\[0V \]

\[V_{in} \]

\[+5V \]

\[V_{out} \]

\[+5V \]

\[N-Type \]

\[P-Type \]

\[I_D \]

\[0V \]

\[Gate Voltage \]
Combining Transistors

- Now, if $V_{DD} = 5V$, $V_{in} = +5V$. What is V_{out}?

Now, our p-type transistor is off, so we can describe it as a break.

Combining Transistors

- Exact behavior of V_{out} vs V_{in} depends on properties of transistors.

Exact behavior of V_{out} vs V_{in} depends on properties of transistors.
Combining Transistors

- But we can identify this as an inverter. The most simple building block of a logic circuit.

\[
V_{DD} \quad P-\text{Type} \quad N-\text{Type} \quad V_{in} \quad V_{out} \quad +5V \quad 0V \quad 0V \quad +5V \quad V_{in} \quad V_{out}
\]

<table>
<thead>
<tr>
<th>(V_{in})</th>
<th>(V_{out})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Next Time...

- FETs Characteristics.

- Quantifying FETs, and extracting parameters.

\[
I_D = \frac{W}{L} \mu C_{ox} \left((V_G - V_T)V_D - \frac{V_D^2}{2} \right)
\]