CS 331: Artificial Intelligence Game Theory III

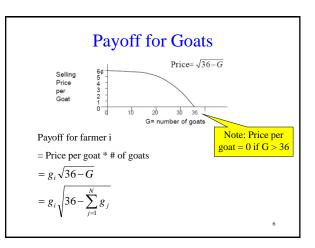
Continuous Action Spaces

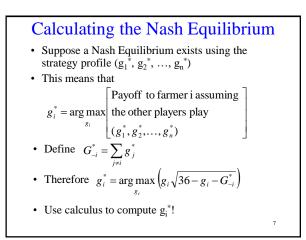
- Previously, we only allowed the players to choose from a finite set of actions
- Today, we'll see how to calculate Nash Equilibria when we have a continuous action space

Tragedy of the Commons (Hardin 1968)

- Illustrates the conflict for resources between individual interests and the common good
- If citizens respond only to private incentives, public goods will be underprovided and public resources overutilized

Tragedy of the Commons


- n farmers in a village graze goats on the commons to eventually fatten and sell
- The more goats they graze the less well fed they are
- And so the less money they get when they sell them



Tragedy of the Commons (Formalized)

- n farmers
- g_i goats allowed to graze on the commons by the *i*th farmer
- Assume goats are continuously divisible ie. $g_i \in [0, 36]$
- Total number of goats in the village is $G = g_1 + \ldots + g_n$.
- Strategy profile $(g_1, g_2, ..., g_n)$.

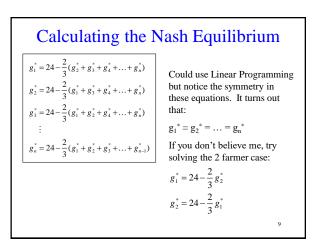
5

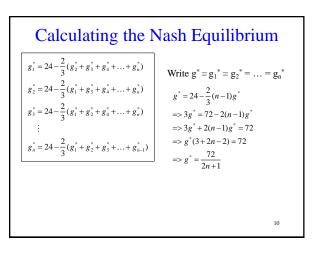
Calculating the Nash Equilibrium

$$\frac{\partial}{\partial g_{i}^{*}} g_{i}^{*} \sqrt{36 - g_{i}^{*} - G_{-i}^{*}} = 0$$

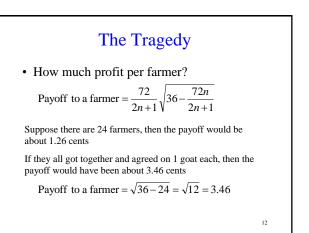
$$\Rightarrow \left(\frac{\partial}{\partial g_{i}^{*}} g_{i}^{*}\right) \sqrt{36 - g_{i}^{*} - G_{-i}^{*}} + g_{i}^{*} \left(\frac{\partial}{\partial g_{i}^{*}} \sqrt{36 - g_{i}^{*} - G_{-i}^{*}}\right) = 0$$

$$\Rightarrow \sqrt{36 - g_{i}^{*} - G_{-i}^{*}} - \frac{g_{i}^{*}}{2\sqrt{36 - g_{i}^{*} - G_{-i}^{*}}} = 0$$


$$\Rightarrow \sqrt{36 - g_{i}^{*} - G_{-i}^{*}} = \frac{g_{i}^{*}}{2\sqrt{36 - g_{i}^{*} - G_{-i}^{*}}}$$


$$\Rightarrow 2(36 - g_{i}^{*} - G_{-i}^{*}) = g_{i}^{*}$$

$$\Rightarrow 72 - 2g_{i}^{*} - 2G_{-i}^{*} = g_{i}^{*}$$


$$\Rightarrow 72 - 2G_{-i}^{*} = 3g_{i}^{*}$$

$$\Rightarrow g_{i}^{*} = 24 - \frac{2}{3}G_{-i}^{*}$$

What Went Wrong?

- · Rational behavior lead to sub-optimal solutions
- Maximizing one's utility is not the same as maximizing social welfare
- To solve this problem, we can define the rules of the game to ensure that social welfare is not disregarded
- This is why mechanism design is important since it involves defining the rules of the game

13

Conclusions on Game Theory

 Sylvia Nasar's (author of the biography "A Beautiful Mind") synopsis of John Nash's remarks on winning the Nobel prize:

"...he [Nash] felt that game theory was like string theory, a subject of great intrinsic intellectual interest that the world wishes to imagine can be of some utility. He said it with enough skepticism in his voice to make it funny."

Conclusions on Game Theory

- Game theory is mathematically elegant but there are problems in applying it to real world problems:
 - Assumes opponents will play the equilibrium strategy
 - What to do with multiple Nash equilibria?
 - Computing Nash equilibria for complex games is nasty (perhaps even intractable)
 - Players have non-stationary policies
 Lots of other assumptions that don't hold...
- Game theory used mainly to analyze environments at equilibrium rather than to control agents within an environment
- · Also good for designing environments (mechanism design)

15

What you should know

- How to calculate Nash Equilibria for a continuous action space game like the Tragedy of the Commons
- Why the Tragedy of the Commons is tragic
- Why game theory has difficulties being applied to real world problems

16

14