Knowledge-based Agents

- Can represent knowledge
- And reason with this knowledge
- How is this different from the knowledge used by problem-specific agents?
 - More general
 - More flexible

Outline

1. Knowledge-based Agents
2. The Wumpus World
3. Logic

Knowledge is definite

- Knowledge of logical agents is always definite
- That is, each proposition is entirely true or entirely false
- Agent may be agnostic about some propositions
- Logic doesn’t handle uncertainty well
The Knowledge Base (KB)

- A knowledge base is a set of “sentences”
- Each sentence is expressed in a knowledge representation language and represents some assertion about the world

Knowledge Base Example

- When you discover a new fact like “The murder room wasn’t the study”, you would TELL the KB
- You can then ASK the KB what to ask next

Inference

- Inference: deriving new sentences from old ones
- Must obey fundamental requirement: when one ASKs a question of the knowledge base, answer should follow from what has been TELLed to the KB previously

A Generic Knowledge-based Agent

- Starts out with background knowledge
A Generic Knowledge-based Agent

1. TELL the KB what it perceives
2. ASK the KB what action it should perform
3. TELL the KB that the action was executed

The Wumpus World

- **Performance measure:**
 - +1000 for picking up gold, -1000 for death (meeting a live wumpus or falling into a pit)
 - -1 for each action taken, -10 for using arrow
- **Environment:**
 - 4x4 grid of rooms
 - Agent starts in (1,1) and faces right
 - Geography determined at the start:
 - Gold and wumpus locations chosen randomly
 - Each square other than start can be a pit with probability 0.2

The Wumpus World

- **Actuators:**
 - Movement:
 - Agent can move forward
 - Turn 90 degrees left or right
 - Grab: pick up an object in same square
 - Shoot: fire arrow in straight line in the direction agent is facing

The Wumpus World

- **Sensors:**
 - Returns a 5-tuple of symbols eg. [stench, breeze, glitter, bump, scream] (note that in this 5-tuple, all five things are present. We indicate absence with the value None)
 - In squares adjacent to the wumpus, agent perceives a stench
 - In squares adjacent to a pit, agent perceives a breeze
 - In squares containing gold, agent perceives a glitter
 - When agent walks into a wall, it perceives a bump
 - When wumpus is killed, it emits a woeful scream that is perceived anywhere

The Wumpus World

- **Biggest challenge:** Agent is ignorant of the configuration of the 4x4 world
- Needs logical reasoning of percepts in order to overcome this ignorance
- Note: retrieving gold may not be possible due to randomly generated location of pits
- **Initial knowledge base contains:**
 - Agent knows it is in [1,1]
 - Agent knows it is a safe square
The Wumpus World Environment
Properties
- Fully or Partially observable?
- Deterministic or stochastic?
- Episodic or sequential?
- Static or dynamic?
- Discrete or continuous?
- Single agent or multiagent?

Wumpus World Example

1st percept is:
[None, None, None, None, None]
(Corresponding to [Stench, Breeze, Glitter, Bump, Scream])
Agent concludes squares [1,2], [2,1] are safe. We mark them with OK. A cautious agent will move only to a square that it knows is OK.

Agent now moves to [2,1]

Wumpus World Example

2nd percept is:
[None, Breeze, None, None, None]
Must be a pit at [2,2] or [3,1] or both. We mark this with a P?.
Only one square that is OK, so the agent goes back to [1,1] and then to [1,2]

Wumpus World Example

3rd percept is:
[Stench, None, None, None, None]
Wumpus must be nearby. Can’t be in [1,1] (by rules of the game) or [2,2] (otherwise agent would have detected a stench at [2,1])
Therefore, Wumpus must be in [1,3]. Indicate this by W!.
Lack of breeze in [1,2] means no pit in [2,2], so pit must be in [3,1].

Note the difficulty of this inference:
- Combines knowledge gained at different times and at different places.
- Relies on the lack of a percept to make one crucial step
At this point, the agent moves to [2,2].
Wumpus World Example

We’ll skip the agent’s state of knowledge at [2, 2] and assume it goes to [2, 3].
Agent detects a glitter in [2, 3] so it grabs the gold and ends the game

Note: In each case where the agent draws a conclusion from the available information, that conclusion is guaranteed to be correct if the available information is correct.

Logic

Logic must define:
1. Syntax of the representation language
 - Symbols, rules, legal configurations
2. Semantics of the representation language
 - Loosely speaking, this is the “meaning” of the sentence
 - Defines the truth of each sentence with respect to each possible world
 - Everything is either true or false, no in between

Models

- We will use the word model instead of “possible world”
- “m is a model of α” means that sentence α is true in model m
- Models are mathematical abstractions which fix the truth or falsehood of every relevant sentence
- Think of it as the possible assignments of values to the variables
 - E.g. the possible models for \(x + y = 4 \) are all possible assignments of numbers to \(x \) and \(y \) such that they add up to 4

Entailment

\(\alpha \models \beta \) means \(\alpha \) entails \(\beta \) i.e. \(\beta \) follows logically from \(\alpha \), where \(\alpha \) and \(\beta \) are sentences

Mathematically, \(\alpha \models \beta \) if and only if in every model in which \(\alpha \) is true, \(\beta \) is also true.

Another way: if \(\alpha \) is true, then \(\beta \) must also be true.

Entailment Applied to the Wumpus World

- Suppose the agent moves to [2, 1]
- Agent knows there is nothing in [1, 1] and a breeze in [2, 1]
- These percepts, along with the agent’s knowledge of the rules of the wumpus world constitute the KB
- Given this KB, agent is interested if the adjacent squares [1, 2], [2, 2] and [3, 1] contain pits.
Entailment Applied to the Wumpus World

Let us consider the models that support the conclusion $\alpha_1 = \text{"There is no pit in [1,2]."}$. We draw a line marked with α_1 around these models in every model in which KB is true, α_1 is also true. Therefore KB $\models \alpha_1$.

In some models in which KB is true, α_2 is false. Therefore KB $\not\models \alpha_2$ and the agent cannot conclude that there is no pit in [2,2].

Modified Wumpus World

- Breeze occurs in squares directly or diagonally adjacent to a pit

<table>
<thead>
<tr>
<th>1,1</th>
<th>1,2</th>
<th>1,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2,1</th>
<th>2,2</th>
<th>2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Want to reason about squares [2,2], [2,3], [1,3]. Are these sentences entailed?
- S1: There is a wumpus in [2,2].
- S2: There is a pit in [1,3].

Logical inference

- Entailment can be applied to derive conclusions (we call this carrying out logical inference)
- Model checking: enumerates all possible models to check that α is true in all models in which KB is true
- If an inference algorithm i can derive α from the KB, we write KB $\vdash_i \alpha$
- The above is pronounced “α is derived from KB by i” or “i derives α from KB”

Soundness

- An inference algorithm that derives only entailed sentences is called sound or truth-preserving
- Soundness is a good thing!
- If an inference algorithm is unsound, you can make things up as it goes along and derive basically anything it wants to
Completeness

• An inference algorithm is complete if it can derive any sentence that is entailed
• For some KBs, the number of sentences can be infinite
• Can’t exhaustively check all of them, need to rely on proving completeness

In Summary

• Soundness: i is sound if whenever $KB \models \alpha$, it is also true that $KB \models \alpha$
• Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \models \lnot \alpha$

Propositional Logic: Syntax and Semantics

Syntax: Backus-Naur Form grammar of sentences in propositional logic

Sentence \rightarrow AtomicSentence $|$ ComplexSentence
AtomicSentence \rightarrow True $|$ False $|$ Symbol
Symbol \rightarrow P $|$ Q $|$ R $|$ …
ComplexSentence \rightarrow \lnot Sentence
| (Sentence \land Sentence)
| (Sentence \lor Sentence)
| (Sentence \Rightarrow Sentence)
| (Sentence \Leftrightarrow Sentence)

Atomic Sentences

• The indivisible syntactic elements
• Consist of a single propositional symbol e.g. P, Q, R that stands for a proposition that can be true or false e.g. P=true, Q=false
• We also call an atomic sentence a literal
• 2 special propositional symbols:
 – True (the always true proposition)
 – False (the always false proposition)

Complex Sentences

• Made up of sentences (either complex or atomic)
• 5 common logical connectives:
 – \lnot (not): negates a literal
 – \land (and): conjunction e.g. P \land Q where P and Q are called the conjuncts
 – \lor (or): disjunction e.g. P \lor Q where P and Q are called the disjuncts
 – \Rightarrow (implies): e.g. P \Rightarrow Q where P is the premise/antecedent and Q is the conclusion/consequent
 – \Leftrightarrow (if and only if): e.g. P \Leftrightarrow Q is a biconditional
Precedence of Connectives

- In order of precedence, from highest to lowest: \(\neg, \land, \lor, \Rightarrow, \Leftrightarrow\)
- E.g. \(\neg P \lor Q \land R \Rightarrow S\) is equivalent to \((\neg P) \lor (Q \land R)) \Rightarrow S\)
- You can rely on the precedence of the connectives or use parentheses to make the order explicit
- Parentheses are necessary if the meaning is ambiguous

Semantics (Are sentences true?)

- Defines the rules for determining if a sentence is true with respect to a particular model
- For example, suppose we have the following model: \(P=\text{true}, Q=\text{false}, R=\text{true}\)
- Is \((P \land Q \land R)\) true?

Note on implication

- \(P \Rightarrow Q\) seems weird…doesn’t fit intuitive understanding of “if \(P\) then \(Q\)”
- Propositional logic does not require causation or relevance between \(P\) and \(Q\)
- Implication is true whenever the antecedent is false (remember \(P \Rightarrow Q\) can be translated as \(\neg P \lor Q\))
 - Implication says “if \(P\) is true, then I am claiming that \(Q\) is true. Otherwise I am making no claim”
 - The only way for this to be false is if \(P\) is true but \(Q\) is false

Semantics

For atomic sentences:
- True is true, False is false
- A symbol has its value specified in the model

For complex sentences (for any sentence \(S\) and model \(m\)):
- \(\neg S\) is true in \(m\) iff \(S\) is false in \(m\)
- \(S_1 \land S_2\) is true in \(m\) iff \(S_1\) is true in \(m\) and \(S_2\) is true in \(m\)
- \(S_1 \lor S_2\) is true in \(m\) iff \(S_1\) is false in \(m\) or \(S_2\) is true in \(m\)
 i.e., can translate it as \(\neg S_1 \lor S_2\)
- \(S_1 \Rightarrow S_2\) is true iff \(S_1=\Rightarrow S_2\) is true in \(m\) and \(S_2=\Rightarrow S_1\) is true in \(m\)
 i.e., can translate it as \(\neg S_1 \lor S_2\)

The Wumpus World KB (only dealing with knowledge about pits)

For each \(i, j\):
Let \(P_{ij}\) be true if there is a pit in \([i, j]\)
Let \(B_{ij}\) be true if there is a breeze in \([i, j]\)

The KB contains the following sentences:
1. There is no pit in \([1,1]\):
 \(R_1; \neg P_{1,1}\)
2. A square is breezy iff there is a pit in a neighboring square; (not all sentences are shown)
 \(R_2; B_{i,j} \iff P_{i+1,j} \lor P_{i-1,j} \lor P_{i,j+1} \lor P_{i,j-1}\)
 \(R_3; B_{i+1,j} \iff (P_{i+1,j} \lor P_{i+1,j+1} \lor P_{i+1,j-1})\)

 47
The Wumpus World KB

3. We add the percepts for the first two squares ([1,1] and [2,1]) visited in the Wumpus World example:
 \[R_4: \neg B_{1,1} \]
 \[R_5: B_{2,1} \]

The KB is now a conjunction of sentences \(R_1 \land R_2 \land R_3 \land R_4 \land R_5 \) because all of these sentences are asserted to be true.

Inference

- How do we decide if \(KB \models \alpha \)?
- Enumerate the models, check that \(\alpha \) is true in every model in which \(KB \) is true

<table>
<thead>
<tr>
<th>(B_{1,1})</th>
<th>(B_{1,1})</th>
<th>(P_{1,1})</th>
<th>(P_{1,1})</th>
<th>(P_{1,1})</th>
<th>(P_{1,1})</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(R_5)</th>
<th>(KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
</tr>
</tbody>
</table>

Things you should know

- Properties of a knowledge-based agent
- What a knowledge-base is
- What entailment and inference mean
- Desirable properties of inference algorithms such as soundness and completeness