2017 IEEE 33rd International Conference on Data Engineering

Scalable Linear Algebra on a Relational Database
System

Shangyu Luo*, Zekai J. Gao*, Michael Gubanov', Luis L. Perez?, Christopher Jermaine*
*Rice University, {sl45, jacobgao, cmj4} @rice.edu, {Rice University, lperezp@gmail.com
TUniversity of Texas, San Antonio, mikhail.gubanov@utsa.edu

Abstract—As data analytics has become an important appli-
cation for modern data management systems, a new category
of data management system has appeared recently: the scalable
linear algebra system. In this paper, we argue that a parallel
or distributed database system is actually an excellent platform
upon which to build such functionality. Most relational systems
already have support for cost-based optimization—which is vital
to scaling linear algebra computations—and it is well-known how
to make relational systems scale.

We show that by making just a few changes to a paral-
lel/distributed relational database system, such a system can be a
competitive platform for scalable linear algebra. Taken together,
our results should at least raise the possibility that brand new
systems designed from the ground up to support scalable linear
algebra are not absolutely necessary, and that such systems could
instead be built on top of existing relational technology. Our
results also suggest that if scalable linear algebra is to be added
to a modern dataflow platform such as Spark, they should be
added on top of the system’s more structured (relational) data
abstractions, rather than being constructed directly on top of the
system’s raw dataflow operators.

1. INTRODUCTION

Data analytics, including machine learning and large-scale
statistical processing, is an important application domain and
such computations often require linear algebra. Thus a new
category of data processing system has appeared recently: the
scalable linear algebra system.

Unlike established, long-lived efforts aimed at building
scalable linear algebra APIs (such as ScaLAPACK [1]), these
newer efforts are targeted more towards building complete
data management systems. Not only do scalable linear algebra
systems provide support for vectors and matrices and standard
operations on them, but they also support storage/retrieval of
data to/from disk, buffering/caching of data, and automatic
logical/physical optimizations of computations (automatic re-
writing of queries, pipelining, etc.). Such systems also typically
offer some form of recovery, as well as offering a special-
purpose domain-specific language.

There are three types of modern, scalable linear algebra
systems that have been developed over the last few years:

1) The first type is built almost from the ground up to support
scalable linear algebra, and provides support for all or
most of the aforementioned features. A good example of
this type of system is SystemML, developed at IBM [2].
The second type of system is what we term a linear
algebra dataflow API, e.g., Spark’s m11ib.linalg [3].
While such an API is closer in spirit to older efforts
such as ScaLAPACK, such an API’s tight integration
with a dataflow platform means that the API comes
with the more general data management support that the
underlying platform provides.

2)

2375-026X/17 $31.00 © 2017 IEEE
DOI 10.1109/ICDE.2017.108

523

3) The third type of scalable linear algebra system is the
array database system [4], [5]. such as SciDB [6].

Is a New Type of System Actually Necessary? While
supporting scalable linear algebra in the context of a full-
fledged data management system is clearly a desirable goal,
the hypothesis underlying this paper is that with just a few
changes, a classical, parallel relational database is actually an
excellent platform for building a scalable linear algebra system.

In practice, many (or even most) distributed linear algebra
computations have closely corresponding, distributed relational
algebra computations. Given this, we believe that it is natural
to build distributed linear algebra functionality on top of
a distributed relational database system. Such systems are
highly performant, reaping the benefits of decades of research
and engineering effort targeted at building efficient systems.
Further, relational systems already have software components
such as a cost-based query optimizer to aid in performing
efficient computations. In fact, much of the work that goes into
developing a scalable linear algebra system from the ground
up [7] requires implementing functionality that looks a lot like
a database query optimizer [8].

Given that much of the world’s data currently sits in
relational databases, and that dataflow systems increasingly
provide at least some support for relational processing [9],
[10], building linear algebra support into relational systems
would mean that much of the world’s data would be sitting
in systems capable of performing scalable linear algebra. This
would have several obvious benefits:

1) It would eliminate the “extract-transform-reload night-
mare”, particularly if the goal is performing analytics on
data already stored in a relational system. It is difficult
and expensive (in terms of computing/network costs and
engineering dollars) to remove data from one system and
put it in another, and if a database came off-the-shelf with
the necessary functionality, there would be no reason to
undertake such an often arduous task.

It would obviate the need for practitioners to adopt yet
another type of data processing system in order to perform
mathematical computations.

The design and implementation of high-performance dis-
tributed and parallel relational systems is well-understood.
If it is possible to adapt such a system to the task
of scalable linear algebra, most or all of the science
performed over decades, aimed at determining how to
build a distributed relational system, is directly applicable.

2)

3)

Along those lines, in this paper, we ask the question:

Can we make a very small set of changes to the relational
model and a RDBMS software to render them suitable for in-
database linear algebra?

IEEE
computer
psoaety

Our Contributions. The approach we examine is simple:
we consider adding new LABELED_SCALAR, VECTOR, and
MATRIX data types to relational database systems. Technically,
this seems to be a rather minor change. After all, array
has been available as a data types in most modern DBMSs—
arrays can clearly be used to encode vectors and matrices—
and some database systems (such as Oracle) offer a form of
integration between arrays and linear algebra libraries such
as BLAS [11] and LAPACK [12]. However, these previous,
ad-hoc approaches do not offer complete integration with the
database system. The query optimizer, for example, does not
understand the semantics of the relational algebra, and this
results in losing opportunities for optimization. Thus, we also
consider a small set of changes to a relational query optimizer
that can render it “linear algebra aware”, and able to make
reasonable decisions in the face of linear algebra.

Specific contributions of this paper are as follows:

e We propose a very small set of changes to SQL that make
it easy for a programmer to specify even complicated
computations over vectors and matrices.

We propose a set of simple language mechanisms for

moving between purely relational data, vectors, and ma-

trices, making it easily possible to combine relational and
linear algebra as necessary, in one system.

We implement these ideas in the context of the SimSQL

parallel database system [13].

e We show experimentally that the resulting system has
performance that is comparable to a special-purpose
array system (SciDB), a special-purpose scalable linear
algebra system (SystemML), and a linear algebra library
built directly on top of a dataflow platform (Spark’s
mllib.linalg).

Simplicity and ease of implementation should be consid-
ered a feature of our approach. Taken together, our results show
the suitability of existing, relational systems for scalable linear
algebra computations. As such, we believe that our results call
into question the need to build yet another special-purpose data
management system for linear-algebra-based analytics.

II. LA OoN TOP OF RA

In this section of the paper, we discuss why a relational
database system might make an excellent platform for high-
performance, distributed linear algebra. We then discuss the
challenges in using a database system for linear algebra, as
well as our basic approach.

A. Linear and Relational Algebra

Development of distributed algorithms for linear algebra
has been an active area of scientific investigation for decades,
and many algorithms have become standard. Figure 1(a) shows
the example of performing a distributed multiplication of two
large, dense matrices, O < L x R.

For efficiency and storage consideration, matrices to be
multiplied in a distributed system are typically “blocked” or
“chunked”; that is, they are divided into smaller matrices,
which can then be moved around in bulk to specific processors
where high-performance local computations are performed.
Imagine that the six blocks making up each of the two
input matrices L and R are distributed among three nodes as
shown at the left of Figure 1(b). The blocks from L are hash

524

partitioned randomly, while the blocks from R are round-robin
partitioned, based upon each block’s row identifier.

As a first step to perform the distributed multiplication,
we would shuffle the blocks from L so that all of the blocks
from L, column ¢ are co-located with all of the blocks from
R, row . Then, at each node, a local join (in this case, a cross
product) is performed to iterate through all (Lj.i, Ri.k) pairs
that can be formed at the node. For each pair, a matrix multiply
is performed, so that Ii.j.k <— Lj.ixRi.k. Finally, all of the
Ii.j.k blocks are again shuffled so that all I7.j.k are co-located
based upon their (j, k) values—these blocks are then summed,
so that the output block is computed as Oj.k < Ti.j.k.

The key observation underlying this paper is that this is
really just a relational algebra computation over the blocks
making up L and R. The first two steps of the computation are
a distributed join that computes all (Lj.i, Ri.k) pairs, followed
by a projection that performs the matrix multiply. The next two
steps—the shuffle and summation—are nothing more than a
distributed grouping with aggregation.

The matrix multiplication example shows that distributed
linear algebra computations are often nothing more than dis-
tributed relational algebra computations. This fact underlies
our assertion that a relational database system makes an
excellent platform for distributed linear algebra. Database
researchers have spent decades studying efficient algorithms
for distributed joins and aggregations, and many relational
systems are mature and highly performant. Using a distributed
database means that there is no need to reinvent the wheel.

A further benefit of using a distributed database system
as a linear algebra engine is that decades of work in query
optimization is directly applicable. In our example, we decided
to shuffle L. because R was already partitioned on the join key.
Had L been pre-partitioned and not R, it would have been
better to shuffle R. This is exactly the sort of decision that a
modern query optimizer makes with total transparency. Using
a database as the basis for a linear algebra engine gives us the
benefit of query optimization for free.

B. The Challenges

However, there are two main concerns associated with
implementing linear algebra directly on top of an existing
relational system, without modification. First is the complexity
of writing linear algebra computations on top of SQL. Consider
a data set consisting of the vectors {Xy, Xa, ..., X, }, and imagine
that our goal is to compute the distance

d3 (x;,x') = (x; — xX)TA(x; — X)

for a Riemannian metric [14] encoded by the matrix A. We
might wish to compute this distance between a particular data
point x; and every other point x" in the database. This would
be required, for example, in a kKNN-based classification in the
metric space defined by A.

This can be implemented in SQL as follows. Assume the
set of vectors is encoded as a table:

data (pointID, dimID, value)

with the matrix A encoded as another table:
matrixA

(rowID, colID, value)

Then, the desired computation is expressed in SQL as:

:
\= /

(a) Block matrix multiply.

Y]

L col, R row

Shuffle to match

2 Matrix multiply over

3) Shuffle to match L
local cross product

4) Matrix sum over
row, R column

each group

(b) Distributed processing.

Fig. 1: Distributed processing of a block matrix multiply.

CREATE VIEW xDiff (pointID, dimID, value) AS
SELECT x2.pointID, x2.dimID, xl.value - x2.value
FROM data AS x1, data AS x2

WHERE x1.pointID i and x1.dimID x2.dimID

SELECT x.pointID, SUM
FROM (SELECT x.pointID AS pointID,
colID, SUM (a.value * x.value)
FROM xDiff AS x, matrixA AS a
WHERE x.dimID a.rowlD
GROUP BY x.pointID, a.colID)
AS firstPart, xDiff AS x
WHERE firstPart.colID x.dimID
AND firstPart.pointID X.pointID
GROUP BY x.pointID

a.collD AS
AS value

While it is clearly possible to write such a code, it is not
necessarily a good idea.

The first obvious problem is that this is a very intricate
specification, requiring a nested subquery and a view—without
the view it is even more intricate—and it bears little resem-
blance to the original, simple mathematics.

The second problem is perhaps less obvious from looking
at the code, but just as severe: performance. This code is likely
to be inefficient to execute, requiring three or four joins and
two groupings. Even more concerning in practice is the fact
that if the data are dense and the number of data dimensions
is large (that is, there are a lot of dimID values for each
pointID), then the execution of this query will move a huge
number of small tuples through the system, since a million,
thousand-dimensional vectors are encoded as a billion tuples.
In the classical, iterator-based execution model, there is a
fixed cost incurred per tuple, which will translate to a very
high execution cost. Vector-based processing can alleviate this
somewhat, but the fact remains that satisfactory performance
is unlikely. This fixed-cost-per-tuple problem was often cited
as the impetus for designing new systems, specifically for
vector- and matrix-based processing, or for processing of more
general-purpose arrays.

C. The Solution

As a solution, we propose a very small set of changes
to a typical relational database system that include adding
Iw“/LABELED_SCALAR,VECTOR,amiMATRIX(thme

(firstPart.value * x.value)

525

to the relational model. Because these non-normalized data
types cause the contents of vectors and matrices to be ma-
nipulated as a single unit during query processing, the simple
act of adding these new types brings significant performance
improvements. It becomes easy to implement efficient, linear
algebra computations on top of a database with these changes.

Further, we propose a very small number of SQL language
extensions for manipulating these data types and moving
between them. This alleviates the complicated-code problem.
In our Riemannian metric example, the two input tables
data and matrixA become data (pointID, wval) and
matrixA (val) respectively, where data.val is a vector,
and matrixA.val is a matrix. The SQL code to compute
the pairwise distances becomes dramatically simpler:

SELECT x2.pointID,
inner_ product (
matrix vector_multiply (
a.val, xl.val - x2.val),
xl.val - x2.val) AS value
FROM data AS x1, data AS x2, matrixA AS a
WHERE x1.pointID i

In the next full section of the paper, we describe our
proposed extensions in detail.

I11.
A. New Types

At the very highest level, we propose adding VECTOR,
MATRIX, and LABELED_SCALAR column types to SQL
and the relational model, as well as a useful set of oper-
ations over those types (diag to extract the diagonal of a
matrix, matrix_vector_multiply to multiply a matrix
and a vector, matrix_multiply to multiply two matri-
ces, and so on). Overall, 22 different built-in functions over
LABELED_SCALAR, VECTOR and MATRIX types are present
in our implementation. Each element of a VECTOR or a
MATRIX is a Double.

In this particular subsection, we focus on introducing the
VECTOR and MATRIX types, LABELED_SCALAR will be
considered in detail in a subsequent subsection.

For a simple example of the use of VECTOR and MATRIX
types, consider the following table:

OVERVIEW OF EXTENSIONS

CREATE TABLE m (mat MATRIX[10][10],

vec VECTOR[100]);

This code specifies a relational table, where each tuple
in the table has two attributes, mat and vec, of types
MATRIX and VECTOR respectively. In our language exten-
sions, VECTORs and MATRIXes (as above) can have specified
sizes, in which case operations such as matrix_vector-
_multiply are automatically type-checked for size mis-
matches. For example, the following query:

SELECT matrix vector_multiply m.vec)
AS res

FROM m

(m.mat,

will not compile because the number of columns in m.mat
does not match the number of entries in m.vec. However, if
the original table declaration had been:

CREATE TABLE m (mat MATRIX[10][10],

vec VECTOR[10]);

then the aforementioned SQL query would compile and exe-
cute, and the output would be a database table with a single
attribute (called res) of type VECTOR[10].

Note that in our extensions, there is no distinction between
row and column vectors; whether or not a vector is a row
or a column vector is up to the interpretation of each indi-
vidual operation. matrix_vector_multiply interprets a
vector as being a column vector, for example. To perform
a matrix-vector multiplication treating the vector as a row
vector, a programmer would first transform the vector into
a one-row matrix (this transformation is described in the
subsequent subsection) and then call matrix_multiply.
Or, a programmer could transform the matrix first, then apply
the matrix_vector_multiply function.

It is possible to create MATRIX and VECTOR types where
the sizes are unspecified:

CREATE TABLE m (mat MATRIX[10][10],

vec VECTORI[]);

In this case, the aforementioned matrix_vector_mu-
ltiply SQL query would compile, but there could possibly
be a runtime error if one or more of the tuples in m contained
a vec attribute that did not have 10 entries.

It is also possible to have a MATRIX declaration where
only one of the dimensionalities is given; for example,
MATRIX[10] [] is acceptable. However, it is generally a
good idea for a programmer to specify the sizes in the table
declaration, if possible. If a dimensionality is given, then the
system ensures that there can be no runtime failures due to size
mismatches. At load time, data is checked to ensure the correct
dimensionality, and queries are fully type-checked to ensure
that proper dimensionalities are used. Further, if dimensions
are known, it can help the optimization process because the
optimizer is aware of the sizes of intermediate results; a plan
that uses a linear algebra operation that greatly reduces the
amount of data early on (a multiplication of two “skinny”
matrices, for example, which results in a small output matrix)
may be chosen over other plans that would be preferred had
the system not been aware of the output sizes of operations.

B. Built-In Operations

In addition to a long list of standard relational algebra
operations, the standard arithmetic operations +, —, = and /

526

(element-wise) are also defined over MATRIX and VECTOR
types. For example, the SQL:

CREATE TABLE m (mat MATRIX[100][10]);

SELECT mat * mat
FROM m

returns a database table which stores the Hadamard product of
each matrix in m with itself.

Since the standard arithmetic operations are all overloaded
to work with MATRIX and VECTOR types, it means that
the standard SQL aggregate operations all work as expected
automatically. The SUM aggregate over VECTOR type attribute,
for example, performs a + (entry-by-entry addition) over each
VECTOR in a relation. This can be very convenient for im-
plementing mathematical computations. For example, imagine
that we have a matrix stored as a relational table of vectors, and
we wish to perform a standard Gram matrix computation (if
the matrix X is stored as a set of columns X = {x1,Xa, ..., X, },
then the gram matrix of X is Y, x;x7). This computation
can be implemented using our extensions simply as:

CREATE TABLE v (vec VECTOR[]);

SELECT SUM
FROM v

(outer_product (vec, vec))

Arithmetic between a scalar value and a MATRIX or
VECTOR type performs the arithmetic operation between the
scalar and every entry in the MATRIX or VECTOR. In this way,
it becomes very easy to specify linear algebra computations
of significant complexity using just a few lines of code. For
example, consider the problem of learning a linear regression
model. Given a matrix X = {x;,X2,...,X,} and a set of
outcomes {y1, Y2, ..., Yn}, the goal is to estimate a vector
where for each 4, x;8 ~ y;. In practice, § is typically computed
S0 as to minimizg the squared loss Zi(xiﬁfy,;)? In this case,

the formula for B is given as:

1
i i

This can be coded as follows. If we have:

CREATE TABLE X (i INTEGER, x_i VECTOR []);
CREATE TABLE y (i INTEGER, y_i DOUBLE);

then the SQL code to compute B is:

SELECT matrix_vector_ multiply (
matrix_inverse (

SUM (outer_product (X.x_i, X.x_1i))),
SUM (X.x_1i * y_1i))

FROM X, vy

WHERE X.i = y.1i

Note the multiplication X.x_1i y_i between the vector
X.x_1i and the scalar y_1i, which multiplies y_i by each
entry in X.x_1.

C. Moving Between Types

By introducing MATRIX and VECTOR types, we then have
new, de-normalized alternatives for storing data. For example,
a matrix can be stored as a traditional relation:

mat (row INTEGER, col INTEGER, value DOUBLE)

or as a relation containing a set of row vectors, or as a set of
column vectors using

row_mat (row INTEGER, vec_value VECTOR][])
or
col_mat (col INTEGER, vec_value VECTOR[])

Or, the matrix can be stored as a relation with a single tuple
having the whole matrix:

(ren

It is of fundamental importance to be able to move around
between these various representations, for several reasons.
Most importantly, each has its own performance characteristics
and ease-of-use for various tasks; depending upon a particular
computation, one may be preferred over another.

Reconsider the linear regression example. Had we stored
the data as:

CREATE TABLE X
CREATE TABLE y

mat (value MATRIX

(mat MATRIX
(vec VECTOR

(1017
(1)

then the SQL code to compute B would have been:

SELECT matrix vector_multiply (
matrix_inverse (
matrix multiply (trans_matrix
matrix_ vector_multiply (
trans_matrix (mat), vec))
FROM X, vy

(mat),

Arguably, this is a more straightforward translation of the
mathematics compared to the code that stores X as a set of
vectors. However, it may not perform as well because it may
be more difficult to parallelize on a shared-nothing cluster of
machines. In comparison to the vector-based implementation,
the matrix multiply XTX is implicit in the relational algebra.

Since different representations are going to have their
own merits, it may be necessary to construct (or deconstruct)
MATRIX and VECTOR types using SQL. To facilitate this,
we introduce the notion of a label. In our extension, each
VECTOR attribute implicitly or explicitly has an integer label
value attached to it (if the label is never explicitly set for a
particular vector, then its value is —1 by default). In addition,
we introduce a new type called LABELED_SCALAR, which
is essentially a DOUBLE with a label. Using those labels
along with three special aggregate functions (ROWMATRIX,
COLMATRIX, and VECTORIZE), it is possible to write SQL
code that creates MATRIX types and VECTOR types, respec-
tively, from normalized data.

For example, reconsider the table:

CREATE TABLE y (i INTEGER, y_i DOUBLE) ;

Imagine that we want to create a table with a single vector
tuple from the table y. To do this, we simply write:

SELECT VECTORIZE i))

FROM y

(label_scalar (y_i,

Here, the label_ scalar function creates an attribute of
type LABELED_ SCALAR, attaching the label i to the DOUBLE
y_1i. Then the VECTORIZE operation aggregates the resulting
values into a vector, adding each LABELED_SCALAR value to
the vector at the position indicated by the label. Any ‘“holes”
(or entries in the vector for which no LABELED_SCALAR
were found) in the resulting vector are set to zero. The overall

mat)),

527

number of entries in the vector is set to be equal to the largest
label of any entry in the vector.

As stated above, VECTOR attributes implicitly have labels,
but they can be set explicitly, and those labels can be used
to construct matrices. For example, imagine that we want to
create a single tuple with a single matrix from the table:

mat (row INTEGER, col INTEGER, value DOUBLE)

We can do this with the following SQL code:

CREATE VIEW vecs AS
SELECT VECTORIZE (label_scalar
AS vec, row
FROM mat
GROUP BY row

(val, col))

followed by:

SELECT ROWMATRIX
FROM vecs

(label_vector (vec, row))

The first bit of code creates one vector for each row, and
the second bit of code aggregates those vectors into a matrix,
using each vector as a row. It would have been possible to
create a column matrix by first using a GROUP BY col and
then SELECT COLMATRIX.

So far we have discussed how to de-normalize relations into
vectors and matrices. It is equally easy to normalize MATRIX
and VECTOR types. Assuming the existence of a table 1abel
(id) which simply lists the values 1, 2, 3, and so on, then
one can move from the vectorized representation (found in the
vecs view defined above) to a purely-relational representation
using a join of the form:

SELECT label.id, get_scalar
FROM vecs, label

(vecs.vec, label.id)

Code to normalize a matrix is written similarly.

IV. IMPLEMENTATION

We have implemented all of these ideas on top of the Sim-
SQL distributed database system [13]. SimSQL is a prototype
database system designed to perform scalable numerical and
statistical computations over large data sets, written mostly in
Java, with a C/C++ foreign function interface.

In this section, we describe some details regarding our
implementation. In building linear algebra capabilities into
SimSQL, our mantra was “incremental, not revolutionary”.
Our goal was to see whether, with a small set of changes,
a relational database system could be a reasonable platform
for distributed linear algebra.

A. Distributed Matrices?

One of the very first questions that we had to ask ourselves
when architecting the changes to SimSQL to support vectors
and matrices was: should we allow individual matrices stored
in an RDBMS to be large enough to exceed the size of
RAM available on one machine? Should individual vectors
and matrices be distributable objects?

After a lot of debate, we decided that, in keeping with a
traditional RDBMS design, SimSQL would enforce a require-
ment that all vectors and matrices should be small enough
to fit into the RAM of an individual machine, and that
individual vectors and matrices would not be distributed across
multiple machines. Since our mantra was “incremental, not

revolutionary,” we did not want to replace database tables with
new linear algebra types—which would effectively give us an
array database system. Thus, vectors/matrices are stored as
attributes in tuples. And since distributing individual tuples
or attributes across machines (or having individual tuples
larger than the RAM available on a machine) is generally not
supported by modern database systems, it seemed reasonable
to not to support this in our system.

Of course, one might ask, What if one has a matrix that
is too large to fit into the RAM of an individual machine?
This might be a reasonably common use case, and it would be
desirable to support very large matrices. Fortunately, it turns
out that one can still handle efficient operations over very large
matrices using an RDBMS. For example, a large, dense matrix
with 100,000 rows and 100,000 columns and requiring nearly
a terabyte to store in all can be stored as one hundred tuples
in the table:

bigMatrix (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[10000][100007])

Efficient, distributed matrix operations are then easily pos-
sible via SQL. For example, to multiply bigMatrix with
anotherLargeMat:

anotherLargeMat (tileRow INTEGER,
tileCol INTEGER, mat MATRIX[10000][100001])

We would use:

SELECT lhs.tileRow,
SUM (matrix multiply (lhs.mat, rhs.mat))
FROM bigMatrix AS lhs, anotherLargeMat AS rhs

WHERE lhs.tileCol rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

rhs.tileCol,

The resulting, very efficient computation is identical to what
one would expect from a distributed matrix engine.

Of course, one might argue that there is some intricacy to
this code, and that it is non-trivial to write. This may be a
reasonable point, but it can be addressed with some syntactic
sugar, allowing (for example) a programmer to write:

SELECT =«

FROM matrix multiply (bigMatrix,

B. Storage

Given such considerations, storage for vectors and matrices
is quite simple. Vectors are stored in dense fashion, as lists
of double-precision values, along with an integer label (since,
as described in the previous section, all vectors are labeled
with a row or a column number so that they can be used to
construct matrices). This may sometimes represent a waste if
vectors are indeed sparse, but if necessary vectors can easily
be compressed before being written to secondary storage.

Matrices, on the other hand, are stored as sparse lists of
vectors, using a run-length encoding scheme (missing vectors
are treated as consisting entirely of zeros). As described
previously, matrices can be stored as lists of column vectors
or lists of row vectors; the exact storage format is specified
during matrix construction (via either the ROWMATRIX or
COLMATRIX aggregate function).

C. Algebraic Operations

SimSQL is written mostly in Java, which presented some-
thing of a problem for us when implementing linear algebra

anotherLargeMat)

528

operations: some readers of this paper will no doubt disagree,
but after much examination, we felt that Java linear algebra
packages still lag behind their C/FORTRAN contemporaries
in terms of raw performance. While a high-performance C
implementation is (in theory) available to a Java system via
JNI, passing through the Java/C barrier typically requires a
relatively expensive data copy.

The solution that we implemented is, in the end, a compro-
mise. We decided not to use any Java linear algebra package.
The majority of SimSQL’s built-in linear algebra operations
(indeed, the majority of any linear algebra system’s built-
in operations), are simple and easy to implement efficiently:
extracting/setting the diagonal of a matrix, computing the outer
product of two vectors (which is of linear cost in the size of
the output matrix), scalar/matrix multiplication, and so on. All
such “simple” operations are implemented in Java, directly on
top of our in-memory representation.

There is, however, another set of operations (matrix inverse,
matrix-matrix multiply, etc.), that are much more challenging
to implement in terms of achieving good performance and
dealing with numerical instabilities. For those operations, we
use SimSQL’s foreign function interface to transform vector-
and matrix-valued inputs into C++ objects, where we then use
BLAS implementations to fulfill the operations.

D. Aggregation

The extensions proposed in this paper require two new
types of aggregation. First, we must be able to perform
standard aggregate computations (SUM, AVERAGE, STD_DEV,
etc.) over vectors and matrices. Since, in SimSQL, these stan-
dard aggregate computations are all written in terms of basic
arithmetic operations (+, —, *, etc.), the standard aggregate
computations over vectors and matrices all happen “for free”
without any additional modifications to the system.

Second, our extensions require a few new aggregate func-
tions with special semantics: VECTORIZE, ROWMATRIX, and
COLMATRIX. The first constructs a vector out of a set of
LABELED_SCALAR objects. The latter two construct a matrix
out of a set of vectors. All are implemented within the system
via hashing. For example, in the case of VECTORIZE, all of
the LABELED_SCALAR objects used to build the vector are
collected in a hash table (in the case of a GROUP BY clause,
there would be many such hash tables). Since aggregation is
performed in a distributed manner, hash tables from different
machines that are being used to create the same vector will
need to be merged into a single hash table on a single machine.
Merging may also need to happen if there are enough groups
during aggregation that memory is exhausted; in this case, a
partially-complete hash table may need to be flushed to disk.
Any merge (or insertion into the hash table) that causes two
LABELED_SCALAR objects with the same label to be added
to the vector results in a runtime error.

Once all of the LABELED_SCALAR objects for a vector
have been collected into a single hash table, the objects are
sorted based on the position labels, and are then converted
into a vector. Any missing entries are treated as zero, and the
length of the resulting vector is equal to the largest label used
to construct the vector.

Matrices are constructed similarly, with one change being
that the objects hashed to construct the matrix are VECTOR
objects, rather than LABELED_SCALAR objects. Note that by

Fig. 2: A simple, suboptimal query plan. The projec-
tion at top computes matrix_multiply (r_matrix,
s_matrix).

definition, all VECTOR objects are labeled, and it is those labels
that are used to perform the aggregation.

V. TYPING AND OPTIMIZATION

A. Vector and Matrix Sizes

In practical applications, the individual matrices stored in
a database table can range from a few bytes in size to many
gigabytes in size. Hence, knowing the size of individual linear
algebra object stored in a database is going to be of funda-
mental importance during query optimization. Unfortunately,
linear algebra objects are typically manipulated via a large set
of user-defined and system-provided functions that change the
sizes of the objects being manipulated in ways that are regular,
but opaque to the system. This can easily result in the choice
of a query plan that is far from optimal.

The problem can be illustrated by a simple example.
Assume we have three tables defined as below:

R (r_rid INTEGER, r_matrix MATRIX[10][100000])
S (s_sid INTEGER, s_matrix MATRIX[100000][100])
T (t_rid INTEGER, t_sid INTEGER)

Imagine that the sizes of the tables R, S, and T are 100 tuples,
100 tuples, and 1,000 tuples, respectively. Now, suppose we
want to calculate the product of a number of pairs of matrices
from the relations R and S, where the pairs for which we need
to obtain are indicated by T:

SELECT matrix multiply
FROM R, S, T
WHERE r_rid =

(r_matrix, s_matrix)

t_rid AND s_sid t_sid

A rule-based optimizer, or a cost-based optimizer without
access to good information about the size of the linear algebra
object being pushed through the system, is almost assuredly
going to produce the query plan depicted in Figure 2.

The plan is straightforward. Since no predicate links ta-
bles R and S, the optimizer is going to first join either
R and T or else S and T before joining the third table.
After joining all three tables, the linear algebra computation
matrix_multiply (r_matrix, s_matrix) is then
computed as part of a relational projection operation.

In this example, the join between tables S and T produces
about 1,000 tuples (estimated as %), each containing an
8MB matrix (estimated as 8 x 100000 x 10 bytes). Thus, the
total data produced in this join is about 8 GB.

However, this is clearly not the optimal query plan. It is
possible to do a lot better, as illustrated in Figure 3.

529

Fig. 3: A better query plan that computes the cross prod-
uct of S and R first, which allows early evaluation of
matrix_multiply (r_matrix, s_matrix).

Here we first perform a join between the tables S and
R, despite the lack of a join predicate. A projection on the
join result calculates the product between r_matrix and
s_matrix. While the join between the tables S and R pro-
duces 10,000 tuples, the early projection allows the optimizer
to produce a plan that performs the matrix multiply
(r_matrix, s_matrix) early, to effectively remove all
of the large matrices from the plan; the result of each matrix
multiply is only 8KB (estimated as 8 x 10 x 100 bytes). Thus,
the total data produced in this join and projection is about 80
MB, and it is likely far superior.

B. Type Signatures

To make sure that the SImSQL optimizer has the informa-
tion necessary to choose the correct plan, the type signature for
any function that includes vectors and matrices is templated.
The type signature takes (as an argument) the size and shape
of the input, and returns the size and shape of the output. For
example, the function signature of the built-in function diag
(computing the diagonal of a matrix) is:

diag (MATRIX[a] [a]) —-> VECTOR[a]

This signature constrains the input matrix to be square, and
it indicates that the output vector has a number of entries
identical to the number of rows/columns of the input matrix.
The signature for matrix_multiply is:

matrix multiply (MATRIX[a] [b], MATRIX[b] [c])
MATRIX[a] [c]

->

In this signature, the arguments a, b, and c effectively param-
eterize the function signature. This information is then used
by the optimizer to infer the exact dimensions of the output
object. For example, consider the schema:

U
4

(u_matrix MATRIX[1000][100])
(v_matrix MATRIX[100][10000])

And the query:

SELECT matrix multiply (u_matrix,
FROM U, V

v_matrix)

The optimizer obtains the dimensions of the u_matrix and
v_matrix objects by looking in the catalog. Note that the
user-specified dimensionality for vector/matrix data is enforced
by the system during data loading.

When the dimensions of u_mat rix are retrieved from the
catalog, the type parameter a is bound to 1000, and b is bound
to 100. When the dimensions of v_matrix are retrieved,

b is bound a second time to 100 (a different value for b
would cause a compile-time error) and c is bound to 10000.
Hence, the output of the matrix multiply is a 1000-by-10000
matrix of approximately 80 MB in size; this information can
subsequently be used by the optimizer.

By convention, the SImSQL optimizer always assumes that
matrices are dense, and so a matrix of dimensions a and b
has size (8 bytes) xa x b. While not always accurate, this is
a pessimistic, and hence safe assumption, that will typically
avoid choosing poor plans.

C. unknown Dimensionalities

Note that size parameters can also take a special value
unknown, so that it is possible to have:

U (u_matrix MATRIX[1000][])

Here, the number of columns in the matrix is unknown
at compilation/optimization time—this is typically used when
the table U has matrices with a different number of columns.
In this case, when the optimizer encounters matrix_-
multiply (u_matrix, v_matrix), the signature pa-
rameter b will get nothing from u_matrix, and it will be
bound to 100 referring to the dimension of v_matrix.

Note that it is possible to have dimensions of unknown
sizes that the optimizer is unable to resolve, so that planning
must take place over vectors/matrices whose sizes are not
known. This can be handled in a reasonable way by associating
an estimated size with each unknown dimension value. In
SimSQL, statistics are collected regarding the (approximate)
number of distinct attribute values and the (approximate)
average, physical size of those attribute values. This data is
collected using a lightweight, randomized algorithm, as data
are loaded, and also when materialized views are created.
These statistics are then stored in the system catalog. Given
this data, a vector attribute whose dimensionality is tagged
as unknown can be given an estimated dimensionality of
estimated avg att size/8, since the storage required
for each entry in the vector is 8 bytes. A matrix attribute
with one unknown dimensionality and another whose size
is m can be given an estimated value of estimated avg
att size/(8xm). If both dimensions are unknown, then the
matrix can be assumed to be square for estimation purposes.

Estimates produced in this way for the dimensionality of
vectors will typically be highly accurate, since vector types
are always stored densely. However, estimates for the dimen-
sionality of matrices can be more problematic. As SimSQL
matrices are stored as a (possibly) sparse list of column/row
vectors, estimates for the size of unknown dimensions can
be lower than the reality for sparse data. In terms of choosing
a poor plan, this could pose a problem for the optimizer. As
such, it is always good for a programmer to avoid the use of
unknown dimensions if not absolutely necessary.

VI. EXPERIMENTS

We have implemented all of the capabilities described
in the paper on top of SimSQL, and in this section, we
experimentally evaluate the utility of the new capabilities.

This section consists of two different sets of experiments.
In the first set of experiments, we compare the efficiency
of SimSQL with the new linear algebra types with several
alternative platforms. In a second set of experiments, we

530

consider a couple of relatively complicated machine learning
computations, and show how the addition of matrix and vector
types to the relational model can greatly speed the underlying
machine learning computations.

A. Comparison Across Platforms

This subsection evaluates our proposed addition of
VECTOR and MATRIX types by comparing SimSQL to a
number of alternative platforms.

Platforms Tested. The platforms we evaluated are:

(1) SimSQL. We tested several different SimSQL implemen-
tations: Without vector/matrix support (the original SimSQL
implementation, without the improvements proposed in this
paper), with data stored as vectors, and with data stored as
vectors, then converted into blocks.

(2) SystemML. This is SystemML V0.9, which provides the
option to run on top of Hadoop. All computations are written
in SystemML’s DML programming language.

(3) SciDB. This is SciDB V14.8. All computations are written
in SciDB’s AQL language which is similar to SQL.

(4) Spark m11ib.linalg. This is run on Spark V1.6 in
standalone mode. All computations are written in Scala.

Computations Performed. In our experiments, we performed
three different representative computations.

(1) Gram matrix computation. A Gram matrix is the inner
products of a set of vectors. It is a common computational
pattern in machine learning, and is often used to compute the
kernel functions and covariance matrices. If we use a matrix
X to store the input vectors, then the Gram matrix G can be
calculated as G = X X.

(2) Least squares linear regression. Given a paired data set
{yi,xi},i = 1,...,n, we wish to model each y; as a linear
combination of the values in x;. Let y; ~ x! 8+¢;, where 8 is
the vector of regression coefficients. The most common esti-
mator for B is the least squares estimator: 8 = (X”X)1XTy.

(3) Outlier detection in a vector space. As described in Section
2.2 of the paper, the distance between vectors x; and x’ is
defined as d3 (x;,x’) = (x; — x')TA(x; — x’) for some metric
space defined by the matrix A. For each data point x;, we first
compute the minimum d3 (x;,x’) value over all x’ # x;; this is
the distance of the closest point to X; in the data set. An outlier
is a point whose closest neighbor is far away, and hence we
wish to compute the few data points for which this minimum
distance is maximized among the date set.

Implementation Details. We now describe in some detail
how we performed each of these three computations over the
various platforms.

(1) SimSQL. A SimSQL programmer uses queries and built-
in functions to conduct computations. In SimSQL, we imple-
mented each model using three different SQL codes. First, we
wrote a pure-tuple based code (as on an existing, standard
SQL-based platform). Second, we wrote an SQL code where
each data point is stored as an individual vector, in the schema:

x_vm (id INTEGER, value VECTOR[])

Third, we wrote an SQL code where data points are grouped
together in blocks of 1000 data points, and stored as a matrix
with 1000 rows, so that they can be manipulated as a group.

The Gram matrix computation is written over tuples as:

SELECT x1.col_index, x2.col_index,
SUM (x1.value * x2.value)

FROM x AS x1, x AS x2

WHERE x1.row_index = x2.row_index

GROUP BY x1.col_index, x2.col_index;

The Gram matrix is computed over vectors as:

SELECT SUM (outer_product (x.value,
FROM x_vm AS x;

x.value))

For a block-based computation, the rows are first grouped into
blocks (the table block_index (mi INTEGER) stores the
indices for blocks):

CREATE VIEW MLX (m) AS
SELECT ROWMATRIX (label_vector (
x.value, x.id - ind.mix1000))
FROM x_vm AS x, block_index AS ind
WHERE x.id/1000 = ind.mi
GROUP BY ind.mi;

Note that this grouping step is not necessary if the data are
already stored as blocks; in our experiments, we count the
blocking time as part of the computation.

Then, the result is a sum of a series of matrix multiplies:
SELECT SUM (matrix multiply (

trans_matrix(mlx.m),
FROM mlx;

mlx.m))

The calculation of linear regression is similar to Gram
matrix computation. We omit the code for brevity. We also
omit the code for tuple-based outlier detection.

The key codes of vector-based and block-based outlier
detections are given below. There are three steps to compute
the outlier. First, the distance between each pair of vectors is
computed, then the distance to the closest neighbor is extracted
from that all-distance list, and finally the points with the
furthest nearest neighbors are determined. For the vector-based
computation, we compute the distance to the nearest neighbor
for each point as:

CREATE VIEW DISTANCESM (id, dist) AS
SELECT a.datalD,
MIN (inner_product (mxx.mx_data, a.data))

FROM X _m AS a, MX AS mxx
WHERE a.datalID <> mxx.id
GROUP BY a.datalD;

And in the block-based computation we first calculate all
distances using a set of matrix multiplies:

CREATE VIEW DISTANCES (idl, id2, dm) AS
SELECT mxx.id, mx.id, matrix_multiply (
mxx.m, matrix multiply (mp.mapping,
trans_matrix (mx.m)))

FROM MLX AS mx, MLX AS mxx, MM AS mp;

Then, the minimum distance for each data point is com-
puted via a series of operations on matrices.

(2) SystemML. Physically, the data in SystemML are stored
and processed as blocks, which are square matrices.

Gram matrix computation in SystemML is:

result = t(X) %*% X

Linear regression is omitted. The code of outlier detection is:

all_dist = X $*x% m %*%

X_t

all_dist = all_dist + diag(diag_inf)
min_dist = rowMins (all_dist)
result = rowIndexMax (t (min_dist))

(3) Spark m11ib.linalg. A Spark m11lib.linalg pro-
grammer must decide: should the input data be stored/pro-
cessed as vectors, or as matrices? And, if a matrix is used,
should it be a local matrix, or a distributed one? In our
experiments, we tried different vector/local matrix/distributed
matrix implementations, and selected the most efficient ones.

For Gram matrix computation, vector-based is the fastest:

val result = parsedData.map (
x => x.transpose.multiply (
x .asInstanceOf [DenseMatrix]
) .toArray
) .reduce ((a, b) =>

(a, b).zipped.map(_+_))

For linear regression, vector-based is also the most efficient.
We omit the code for brevity.

Outlier detection was challenging. After a lot of experi-
mentation, we found that the distributed BlockMatrix was
the best. The code is as follows:
val dist_matrix block_matrix_x.

multiply (block_matrix_m).
multiply (block_matrix_x.transpose)

val result =
dist_matrix.toIndexedRowMatrix.rows.map (

x => (x.index, x.vector.toArray)).
map{ case(i, a) =>
{if (i==0) a(0)=a(l)
else a(i.toInt)=a(0); (i, a.min);}
}.max () (
new Ordering[Tuple2[Long, Double]] () {
override def compare (
x: (Long, Double), y: (Long, Double)
): Int =
Ordering[Double] .compare(x._2, y._2)})

(4) SciDB. Data in SciDB are partitioned as chunks. We use
1000 as the chunk size for all arrays in our code.

The SciDB code of Gram matrix computation is:

SELECT x FROM gemm (transpose (x), X%,
build (<val:double>[t1=0:9,1000,0,
t2=0:9,1000,0], 0));

Linear regression is similar. The implementation of outlier
detection is:

SELECT » INTO mxt
FROM gemm (m, transpose (x),
build (<val:double>[t1=0:999,1000,0,
t2=0:99999,1000,01, 0));

SELECT »* INTO all_distance
FROM filter (gemm(x, mxt,
build(<val:double>[t1=0:99999,1000,0,
t2=0:99999,1000,01, 0)), tl<>t2);

SELECT min (gemm)
FROM all_distance
GROUP BY t1;

INTO distance

531

Gram Matrix Computation

Platform | 10 dims [100 dims | 1000 dims
Tuple SimSQL | 00:01:28 | 00:03:19 | 05:04:45
Vector SimSQL | 00:00:37 | 00:00:43 00:05:43
Block SimSQL | 00:01:18 | 00:01:23 | 00:02:53

SystemML 00:00:05% | 00:00:51 00:02:34
Spark m11ib 00:00:20 | 00:00:54 | 00:17:31
SciDB 00:00:03 | 00:00:17 | 00:03:20

Fig. 4: Gram matrix results. Format is HH:MM:SS. A star (x)
indicates running in local mode.

SELECT % INTO max_dist

FROM (SELECT max (min) FROM distance);

SELECT t1
FROM distance JOIN max_dist ON
distance.min max_dist.max;

Experiment Setup. We ran all experiments on 10 Amazon
EC2 m2.4xlarge machines, each having eight CPU cores. For
Gram matrix computation and linear regression, the number
of data points per machine was 10°. For outlier detection, the
number of data points per machine was 10%. All data sets were
dense, and all data were synthetic—since we are only inter-
ested in running time; there is likely no practical difference
between synthetic and real data. For each computational task,
we considered three data dimensionalities: 10, 100, and 1000.

Experiment Results and Discussion. The results are shown
in Figures 4, 5, and 6.

Vector- and block-based SimSQL clearly dominate the
tuple-based implementation for each of the three computations.
The results show that sometimes it is simply not possible to
move enough tuples through a database system to implement
linear algebra operations using only tuples.

To examine this further, we re-ran the tuple-based and
vector-based Gram matrix computations over 1000-dimens-
ional data on a five machine cluster, and this time we timed
the individual operations that made up the computation. Note
that in the 1000-dimensional computation, in the tuple-based
computation, each tuple joins with the other 1000 values
making up the same data point, and all of those tuples need to
be aggregated. Since 5 x 10° data points are stored as 5 x 10%
tuples, this results in 5x 10*! tuples that need to be aggregated.
Even though these operations are pipelined, they dominate the
running time, as shown in Figure 7. Here we see—perhaps
surprisingly—that the the dominant cost is not the join in
the tuple-based computation, but the aggregation. This
illustrates the problem with tuple-based linear algebra: even
a tiny fixed cost associated with each tuple is magnified when
we must push 5 x 10! tuples through the system.

Interestingly, we see that the vector-based computation
was faster than block-based for 10- and 100-dimensional
computations. This is because our experiments counted the
time of grouping vectors into blocked matrices. This additional
computation was not worthwhile for less computationally ex-
pensive problems. But for the 1000-dimensional computations,
additional time savings could be realized via blocking.

For the higher-dimensional, computationally intensive
computations, there was no clear winner among SystemML,

532

Linear Regression
Platform | 10 dims [100 dims | 1000 dims
Tuple SimSQL | 00:03:42 | 00:05:46 | 05:05:22
Vector SimSQL | 00:00:45 | 00:00:49 00:06:35
Block SimSQL | 00:02:23 | 00:02:22 | 00:04:22
SystemML 00:00:06% | 00:00:53 00:02:38
Spark m11ib 00:00:35 | 00:01:01 00:17:42
SciDB 00:00:15 | 00:00:33 | 00:06:04

Fig. 5: Linear regression results. Format is HH:MM:SS. A star
() indicates running in local mode.

Outlier Detection

Platform | 10 dims | 100 dims [1000 dims

Tuple SimSQL Fail Fail Fail
Vector SimSQL | 00:10:14 | 00:11:49 00:13:53
Block SimSQL | 00:03:14 | 00:04:43 00:10:36
SystemML 00:13:29 | 00:22:38 00:33:22
Spark m11ib | 01:22:59 | 01:15:06 | 01:13:06
SciDB 00:03:46 | 00:04:54 | 00:05:06

Fig. 6: Outlier detection results. Format is HH:MM:SS.

SciDB, and SimSQL. SimSQL was a bit slower for the lower-
dimensional problems, because, as a prototype system, it is not
engineered for high throughput. Spark m11ib was not com-
petitive on the higher-dimensional data. Over the three, 1000-
dimensional computations, SimSQL, SystemML, and SciDB
had geometric mean running times of 5 minutes 7 seconds, 6
minutes 5 seconds, and 4 minutes 41 seconds, respectively.

The results for SimSQL, SystemML, and SciDB are close
enough to, in our opinion, be practically identical, at least
on this suite of experiments. SciDB had the fastest mean
because it lacked a particularly poor showing (unlike SimSQL,
which was twice as slow as SciDB for outlier detection, and
SystemML, which took more than six times as long), but the
three means were still very close.

We spent a lot of time trying to tune both SimSQL and
SystemML for the outlier computation. In the case of SimSQL,
the problem appears to be that there are only 10° data points
in all; when grouped into blocks of 1000 vectors, this results
in only 100 matrices in all. This meant that each of our 80
compute cores had an average of 1.25 matrices mapped to it.
Since SimSQL uses a randomized, hash-based partitioning, it
is easily possible for one core to receive four or five of the
100 matrices. This resulted in a very unbalanced computation.
We observed that most cores would finish in a short time,
while just a few, overloaded cores would be left to finish the
computation in a much longer period. Better load balancing
would likely have solved this problem.

Finally, we ask the question: do these experiments support
the hypothesis at the core of the paper, that a relational engine
can be used with little modification to support efficient linear
algebra processing? In terms of performance, they seem to,
though there are some caveats in our findings. First, scalable
linear algebra systems continue to improve. For example, the
SystemML designers have recently shown that it is possible
to greatly speed up SystemML via the use of the specialized
compression methods [15]—had we evaluated a version of
SystemML enhanced with those methods, our results may have
been very different. Still, we feel that it should be possible

Join
& Aggregate
¥ Other Jobs
Vector/Matrix Based '
0 5000 10000 15000 20000

Running Time (s)

Fig. 7: Comparison of Gram matrix computation for tuple-
based and vector-based SimSQL.

to build such methods into an enhanced relational database
system, just as they can be built into SystemML. A second
reasonable concern with our evaluation is that SImSQL is not
a classical relational system, in that it is built upon Hadoop;
hence, is SImSQL really any different from a special-purpose
system such as SystemML? Though SimSQL is built upon
Hadoop, in most ways, it is indistinguishable from a classical,
relational system. SimSQL has an SQL compiler, a cost-based
optimizer, and a very classical relational execution engine
supporting various relational algorithms (joins, aggregations,
etc.). In our implementation, we modified only SimSQL sys-
tem components that are going to be found in any classical
relational system: the type system and the compiler, SimSQL’s
costing framework (so that operations over vectors/matrices
could be costed), a set of new built-in functions, and a few
new aggregation operations. We expect similar results were
a more traditional relational system used, but this should be
verified via future work.

B. Machine Learning Computations

A reasonable critique of the experiments in the last section
is that it focuses exclusively on computationally intensive,
linear algebra computations. In more general machine learning
computations, one might expect that the benefit of vector- and
matrix-based computations vis-a-vis tuple-based computations
would be less pronounced.

Experiment Overview. As an attempt to investigate this
further, we ran two additional experiments, where the goal was
to perform iterative machine learning computations aimed at
learning a Gaussian Mixture Model (GMM) and the Bayesian
Lasso (BL) [16].

The goal of learning a GMM is to estimate the mean and
covariance for a set of Gaussian components in a clustering
model. In our experiment, we generated a synthetical data set
composed of 5 x 107 data points, and distributed those data
points across five Amazon EC2 m2.4xlarge machines.

The BL is a regularized Bayesian regression model. We
produced a synthetical data set that had 5 x 10° {response, re-
gressor} pairs, also on five Amazon EC2 m2.4xlarge machines.
Each regressor had 1000 dimensions.

We wrote both tuple-based implementation and vector/ma-
trix based implementation for these two models. And we use
Gibbs samplers for learning these models.

Experiment Results. Results are given in Figure 8. Since both

533

[Model | Implementation [[Iteration time | Init time |

BL Tuple SimSQL 00:07:28 02:38:46
BL V/M SimSQL 00:04:04 00:04:44
GMM | Tuple SimSQL 00:21:16 00:11:22
GMM | V/M SimSQL 00:09:15 00:08:09

Fig. 8: Performance of GMM and BL learning. Format is
HH:MM:SS per iteration.

learning tasks are iterative, requiring multiple scans over the
data set until convergence, the time is measured as the average
time for five iterations. We also report the initialization time,
which includes the time required to set up the initial model
parameters and to collect statistics required for initialization.

Discussion. While the disparity between the tuple-based and
vector/matrix-based implementations is less when linear alge-
bra objects are used as tools for building more complicated
machine learning computations, the disparity is still significant.
Note that this was the case even though our GMM compu-
tation only utilized 10-dimensional data—one would expect
the disparity to become more acute with higher-dimensionality
(because more tuples would be produced in tuple-based im-
plementation). Also, note that since the BL requires a Gram
matrix computation, the BL initialization time is brought down
from more than two and a half hours to just a few minutes by
using vectors and matrices for the computations.

VII. RELATED WORK

ScalLAPACK [1] is the best-known and most widely-used
framework for distributed linear algebra. However, ScalLA-
PACK is really an MPI-based API, and it is not a data
management system.

As intimated in the introduction to this paper, there has
been some recent interest in combining distributed/parallel data
management systems and linear algebra to support analytics.
One approach is the construction of a special purpose data
management system for scalable linear algebra; SystemML
[2] is the best example of this. Another good example of
this is the Cumulon system [17], which has the notable
capability of optimizing its own hardware settings in the cloud.
MadLINQ [18], built on top of Microsoft’s LINQ framework,
can also be seen as an example of this. Other work aims at
scaling statistical/numerical programming languages such as
R. Ricardo [19] aims to support R programming on top of
Hadoop. Riot [20] attempts to plug an I/O efficient backend
into R to bring scalability.

A second (and not completely distinct) approach is build-
ing scalable linear algebra libraries on top of a dataflow
platform. In this paper, we have experimentally considered
mllib.linalg [3]. Apache Hama [21] is another example
of such a package. So is SciHadoop [22].

The idea of moving past relations onto arrays as a database
data model, particularly for scientific and/or numerical applica-
tions, has been around for a long time. One of the most notable
efforts is Baumann and his colleague’s work on Rasdaman [5].
In this paper, we have compared with SciDB [6], an array
database for which linear algebra is a primary use case.

An array-based approach that is somewhat related to what
we have proposed is SciQL [23], which is a system supporting
an extended SQL that is implemented on top of the MonetDB
system [24]. SciQL adds arrays (in addition to tables) as a sec-

ond data storage abstraction. Our proposed approach is much
more modest; rather than allowing arrays as a fundamental
data abstraction, we simply add vectors and matrices as new
attribute types, with special support, into a relational database.

There is some support for linear algebra in modern, com-
mercial relational database systems, but it is not well-integrated
into the declarative (SELECT-FROM-WHERE) portion of SQL,
and generally challenging to use. For example, Oracle provides
the UTL_NLA [25] package to support BLAS and LAPACK
operations. To multiply two matrices using this package, and
assuming two input matrices m1 and m2 declared as type
utl_nla_array_dbl (and an output matrix res defined
similarly), a programmer would write:

utl nla.blas_gemm(

transa => 'N’, transb => 'N’, m => 3, n => 3,
k => 3, alpha => 1.0, a => ml, lda => 3,

b => m2, 1ldb => 2, beta => 0.0, c¢c => res,
ldc => 3, pack => R);

This code specifies details about the input matrices, as well as
details about the invocation of the BLAS library.

The MADIib project [26] is an effort to build analytics,
including linear algebra functionality, on top of a database
system. MADIib is closely related to what we have described
here, in that this project showed the feasibility and potentially
high performance of linear algebra on top of a database
system. However, MADIib is not concerned with building
linear algebra functionality info a database system.

VIII. FUTURE WORK AND CONCLUSIONS

We have proposed a small set of changes to SQL that
can render any distributed, relational database engine a high-
performance platform for distributed relational algebra. We
have shown that making these changes to a distributed rela-
tional database (SimSQL) results in a system for distributed
linear algebra whose performance meets or exceeds special-
purpose systems. Given that SimSQL is a prototype system
written mostly in Java, it is not unreasonable to speculate that
a commercial, high-performance database system with similar
extensions could do even better. We believe that our results call
into question the need to build yet another special-purpose data
management system for linear-algebra-based analytics.

In terms of future work, the language and optimization
extensions that we proposed do not automatically support
chunking or blocking of very large matrices that cannot be
stored in RAM, nor do they support transparent operations
(multiplications, inversions, etc.) over blocked matrices. Ide-
ally, the decision for when and how to block should be pushed
to to the query optimizer. A further extension would be getting
rid of SQL as the typical front-end altogether, and instead
translating a widely-used mathematical programming language
such as MATLAB into SQL, or directly into a computation that
can be optimized and then executed by the engine.

Acknowledgments. Material in this paper has been supported
by the NSF under grant nos. 1355998 and 1409543, and by
the DARPA MUSE program.

REFERENCES

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet e al.,
ScaLAPACK users’ guide. siam, 1997, vol. 4.

[1]

534

[2]

[3]

[4]

[51

[6]

[7]

[8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan, “SystemML: Declarative
machine learning on mapreduce,” in ICDE, 2011, pp. 231-242.

“Apache spark mllib: http://spark.apache.org/docs/lat-
est/mllib-data-types.html.”

L. Libkin, R. Machlin, and L. Wong, “A query language for multidimen-
sional arrays: Design, implementation, and optimization techniques,” in
SIGMOD, 1996, pp. 228-239.

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann, “The
multidimensional database system rasdaman,” in SIGMOD Record,
vol. 27, no. 2. ACM, 1998, pp. 575-577.

P. G. Brown, “Overview of SciDB: large scale array storage, processing
and analysis,” in SIGMOD, 2010, pp. 963-968.

M. Boehm, D. R. Burdick, A. V. Evfimievski, B. Reinwald, F. R.
Reiss, P. Sen, S. Tatikonda, and Y. Tian, “Systemml’s optimizer: Plan
generation for large-scale machine learning programs.” IEEE Data Eng.
Bull., vol. 37, no. 3, pp. 52-62, 2014.

S. Chaudhuri, “An overview of query optimization in relational sys-
tems,” in PODS. ACM, 1998, pp. 34-43.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in SIGMOD. ACM, 2015, pp.
1383-1394.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” VLDB, vol. 2, no. 2, pp. 1626-1629, 2009.

L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al., “An
updated set of basic linear algebra subprograms (blas),” ACM TOMS,
vol. 28, no. 2, pp. 135-151, 2002.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ guide. Siam, 1999, vol. 9.

Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and C. Jer-

maine, “Simulation of database-valued Markov chains using SimSQL,”
in SIGMOD, 2013, pp. 637-648.

G. Lebanon, “Metric learning for text documents,” IEEE PAMI, vol. 28,
no. 4, pp. 497-508, 2006.

A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald,
“Compressed linear algebra for large-scale machine learning,” VLDB,
vol. 9, no. 12, pp. 960-971, 2016.

T. Park and G. Casella, “The Bayesian Lasso,” JASA, vol. 103, no. 482,
pp. 681-686, 2008.

B. Huang, S. Babu, and J. Yang, “Cumulon: Optimizing statistical data
analysis in the cloud,” in SIGMOD, 2013, pp. 1-12.

Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and

Z. Zhang, “Madling: large-scale distributed matrix computation for the
cloud,” in EuroSys. ACM, 2012, pp. 197-210.

S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and
J. McPherson, “Ricardo: integrating R and Hadoop,” in SIGMOD, 2010,
pp. 987-998.

Y. Zhang, W. Zhang, and J. Yang, “I/o-efficient statistical computing
with riot,” in /CDE. 1IEEE, 2010, pp. 1157-1160.

S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama:
An efficient matrix computation with the mapreduce framework,” in
CloudCom. 1EEE, 2010, pp. 721-726.

J. B. Buck, N. Watkins, J. LeFevre, K. Toannidou, C. Maltzahn,
N. Polyzotis, and S. Brandt, “SciHadoop: Array-based query processing
in Hadoop,” in ACM SC, 2011, p. 66.

Y. Zhang, M. Kersten, and S. Manegold, “Sciql: array data processing
inside an rdbms,” in SIGMOD. ACM, 2013, pp. 1049-1052.

P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution.” in CIDR, vol. 5, 2005, pp. 225-237.
“Oracle corporation: https://docs.oracle.com/cd/B1930~
6_01/index.htm.”

J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li ef al., “The MADIib
analytics library: or MAD skills, the SQL,” VLDB, vol. 5, no. 12, pp.
1700-1711, 2012.

