Week 5: Extensions and Variations of Perceptron, and Practical Issues

Professor Liang Huang

some slides from A. Zisserman (Oxford)
Trivia: Grace Hopper and the first bug

- Edison coined the term “bug” around 1878 and since then it had been widely used in engineering.

- Hopper was associated with the discovery of the first computer bug in 1947 which was a moth stuck in a relay.
Week 5: Perceptron in Practice

- Problems with Perceptron
 - doesn’t converge with inseparable data
 - update might often be too “bold”
 - doesn’t optimize margin
 - result is sensitive to the order of examples

- Ways to alleviate these problems (without SVM/kernels)
 - Part II: voted perceptron and average perceptron
 - Part III: MIRA (margin-infused relaxation algorithm)
 - Part IV: Practical Issues and HW I
 - Part V: “Soft” Perceptron: Logistic Regression

“A ship in port is safe, but that is not what ships are for.”

– Grace Hopper (1906-1992)
Recap of Week 4

input: training data D

output: weights w

initialize $w \leftarrow 0$

while not converged

for $(x, y) \in D$

if $y(w \cdot x) \leq 0$

$w \leftarrow w + yx$

“idealized” ML

```
Input x →  Training →  Model w
Output y →
```

“actual” ML

deep learning \approx representation learning

```
Input x →  Training →  Model w
Output y →
```

```
feature map $\phi$
```
$ python perc_demo.py
(requires numpy and matplotlib)
Part II: Voted and Averaged Perceptron

The diagram illustrates the deviation set error for different perceptron models as a function of epoch. The models compared are:

- Random (unnorm)
- Last (unnorm)
- Avg (unnorm)
- Vote

The graph shows the performance of these models with varying epoch counts, where each model's deviation set error decreases over time. The models include:

- Vanilla perceptron
- Averaged perceptron
- Voted perceptron

The y-axis represents the deviation set error, while the x-axis represents the epoch count.
Brief History of Perceptron

1959
Rosenblatt invention

1962
Novikoff proof

1969
Minsky/Papert book killed it

1997
Cortes/Vapnik SVM

1999
Freund/Schapire voted/avg: revived

2002
Collins structured

2003
Crammer/Singer MIRA

2005
McDonald/Crammer/Pereira structured MIRA

2006
Singer group aggressive

2007--2010
Singer group Pegasos

online aproxx
max margin

DEAD

batch

minibatch

online

+max margin
+kernels
+soft-margin

*mentioned in lectures but optional
(others papers all covered in detail)

AT&T Research

ex-AT&T and students
Voted/Avged Perceptron

- problem: later examples dominate earlier examples
- solution: voted perceptron (Freund and Schapire, 1999)
 - record the weight vector after each example in D
 - *not* just after each update!
 - and vote on a new example using $|D|$ models
- shown to have better generalization power
- averaged perceptron (from the same paper)
 - an approximation of voted perceptron
 - just use the average of all weight vectors
 - can be implemented efficiently
Voted Perceptron

Input: a labeled training set \(\{(x_1, y_1), \ldots, (x_m, y_m)\} \)
number of epochs \(T \)

Output: a list of weighted perceptrons \(\{(v_1, c_1), \ldots, (v_k, c_k)\} \)

- Initialize: \(k := 0, v_1 := 0, c_1 := 0. \)
- Repeat \(T \) times:
 - For \(i = 1, \ldots, m: \)
 * Compute prediction: \(\hat{y} := \text{sign}(v_k \cdot x_i) \)
 * If \(\hat{y} = y \) then \(c_k := c_k + 1. \)
 else \(v_{k+1} := v_k + y_i x_i; \)
 \(c_{k+1} := 1; \)
 \(k := k + 1. \)

Prediction

Given: the list of weighted perceptrons: \(\{(v_1, c_1), \ldots, (v_k, c_k)\} \)
an unlabeled instance: \(x \)

compute a predicted label \(\hat{y} \) as follows:

\[
s = \sum_{i=1}^{k} c_i \text{sign}(v_i \cdot x); \quad \hat{y} = \text{sign}(s). \]
Experiments

The diagram shows a graph comparing different types of perceptron models in terms of their development set error as a function of epoch number. The x-axis represents the epoch number, while the y-axis represents the development set error. Different models compared include:

- vanilla perceptron
- voted perceptron
- averaged perceptron
- random (unnorm)
- last (unnorm)
- avg (unnorm)
- vote

The graph illustrates how each model's error changes over time, with the averaged perceptron showing a steady reduction in error as the number of epochs increases.
Averaged Perceptron

- voted perceptron is not scalable
- and does not output a single model
- avg perceptron is an approximation of voted perceptron
- actually, summing all weight vectors is enough; no need to divide

```plaintext
initialize w ← 0; ws ← 0
while not converged
    for (x, y) ∈ D
        if y(w · x) ≤ 0
            w ← w + yx
        ws ← ws + w
output: summed weights ws
```

after each example, not after each update!
Efficient Implementation of Averaging

- naive implementation (running sum \mathbf{w}_s) doesn’t scale either
- OK for low dim. (HW1); too slow for high-dim. (HW3)
- very clever trick from Hal Daumé (2006, PhD thesis)

initialize $\mathbf{w} \leftarrow 0$; $\mathbf{w}_a \leftarrow 0$; $c \leftarrow 0$

while not converged

for $(\mathbf{x}, y) \in D$

if $y(\mathbf{w} \cdot \mathbf{x}) \leq 0$

$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$

$\mathbf{w}_a \leftarrow \mathbf{w}_a + cy\mathbf{x}$

$c \leftarrow c + 1$

output: $c\mathbf{w} - \mathbf{w}_a$

after each update, not after each example!
Part III: MIRA

- perceptron often makes bold updates (over-correction)
- and sometimes too small updates (under-correction)
- but hard to tune learning rate
- “just enough” update to correct the mistake?

\[w' \leftarrow w + \frac{y - w \cdot x}{\|x\|^2} x \]

easy to show:

\[w' \cdot x = (w + \frac{y - w \cdot x}{\|x\|^2} x) \cdot x = y \]

margin-infused relaxation algorithm (MIRA)
Example: Perceptron under-correction

![Diagram showing perceptron under-correction]

- **Perceptron**: $w' \rightarrow X$
- **w**: Direction of the decision boundary.
- **X**: Data point after under-correction.
MIRA: just enough

\[
\begin{align*}
\min_{w'} & \|w' - w\|^2 \\
\text{s.t.} & \quad w' \cdot x \geq 1
\end{align*}
\]

minimal change to ensure functional margin of 1 (dot-product \(w' \cdot x = 1\))

MIRA \(\approx\) 1-step SVM

functional margin: \(y(w \cdot x)\)

geometric margin: \(\frac{y(w \cdot x)}{\|w\|}\)
MIRA: functional vs geom. margin

\[
\min_{w'} \| w' - w \|^2
\]

s.t. \(w' \cdot x \geq 1 \)

minimal change to ensure functional margin of 1
(dot-product \(w' \cdot x = 1 \))

MIRA \(\approx \) 1-step SVM

functional margin: \(y(w \cdot x) \)

geometric margin: \(\frac{y(w \cdot x)}{\|w\|} \)
Optional: Aggressive MIRA

- aggressive version of MIRA
- also update if correct but not confident enough
 - i.e., functional margin \((y \mathbf{w} \cdot \mathbf{x})\) not big enough
- \(p\)-aggressive MIRA: update if \(y (\mathbf{w} \cdot \mathbf{x}) < p\) \((0 \leq p \leq 1)\)
 - MIRA is a special case with \(p=0\): only update if misclassified!
 - update equation is same as MIRA
 - i.e., after update, functional margin becomes 1
- larger \(p\) leads to a larger geometric margin but slower convergence
Part IV: Practical Issues

“A ship in port is safe, but that is not what ships are for.”

– Grace Hopper (1906-1992)

• you will build your own linear classifiers for HW2 (same data as HW1)

• slightly different binarizations
 • for k-NN, we binarize all categorical fields but keep the two numerical ones
 • for perceptron (and most other classifiers), we binarize numerical fields as well

• why? hint: larger “age” always better? more “hours” always better?
Useful Engineering Tips:

averaging, shuffling, variable learning rate, fixing feature scale

- averaging helps significantly; MIRA helps a tiny little bit
 - perceptron < MIRA < avg. perceptron ≈ avg. MIRA ≈ SVM
- shuffling the data helps hugely if classes were ordered (HW1)
 - shuffling before each epoch helps a little bit
- variable (decaying) learning rate often helps a little
 - \(1/(\text{total # updates}) \) or \(1/(\text{total # examples}) \) helps
 - any requirement in order to converge?
 - how to prove convergence now?
- centering of each dimension helps (Ex1/HW1)
 - why? => smaller radius, bigger margin!
- unit variance also helps (why?) (Ex1/HW1)
 - 0-mean, 1-var => each feature ≈ a unit Gaussian
Feature Maps in Other Domains

• how to convert an image or text to a vector?

28x28 grayscale image

23x23 RGB image

\[x \in \mathbb{R}^{784} \]

• image

“one-hot” representation of words (all binary features)

• text

in deep learning there are other feature maps
Part V: Perceptron vs. Logistic Regression

- logistic regression is another popular linear classifier
- can be viewed as “soft” or “probabilistic” perceptron
- same decision rule (sign of dot-product), but prob. output

\[
f(x) = \text{sign}(w \cdot x)
\]

perceptron

\[
\sigma(x) = \frac{1}{1 + e^{-w \cdot x}}
\]

logistic regression
Logistic vs. Linear Regression

- Linear regression is regression applied to real-valued output using linear function.
- Logistic regression is regression applied to 0-1 output using the sigmoid function.

https://florianhartl.com/logistic-regression-geometric-intuition.html
Why Logistic instead of Linear

- linear regression easily dominated by distant points
- causing misclassification

\[\sigma(wx + b) \text{ fit to } y \]

\[wx + b \text{ fit to } y \]

- fit of \(wx + b \) dominated by more distant points
- causes misclassification
- instead LR regresses the sigmoid to the class data

Why Logistic instead of Linear

- linear regression easily dominated by distant points
- causing misclassification

\[\sigma(w_1 x_1 + w_2 x_2 + b) \text{ fit, vs } w_1 x_1 + w_2 x_2 + b \]
Why 0/1 instead of +/-1

- perc: \(y = +1 \) or -1; logistic regression: \(y = 1 \) or 0
- reason: want the output to be a probability
- decision boundary is still linear: \(p(y=1 \mid x) = 0.5 \)
Logistic Regression: Large Margin

- perceptron can be viewed roughly as “step” regression
- logistic regression favors large margin; SVM: max margin
- in practice: perc. << avg. perc. \(\approx\) logistic regression \(\approx\) SVM