Question 1 [11 marks]:
Consider a pn-junction as shown in Figure 1(a).

\[E = -\frac{d\phi}{dx} = \begin{cases} \left(-\frac{N_A e}{\varepsilon_0 \varepsilon_r}
ight)(x + w_p) & -w_p < x < 0 \\ \left(-\frac{N_D e}{\varepsilon_0 \varepsilon_r}
ight)(x - w_n) & 0 < x < w_n \\ 0 & \text{elsewhere} \end{cases} \]

Where:
- \(E \) is electric field strength.
- \(\phi \) is electrostatic potential.
- \(x \) is position.
- \(N_A \) is acceptor density.
- \(N_D \) is the donor density.
- \(w_p \) is the width of the depletion region in the p-type semiconductor.
- \(w_n \) is the width of the depletion region in the n-type semiconductor.
- \(\varepsilon_0 \) is the vacuum permittivity.
- \(\varepsilon_r \) is the relative permittivity of the semiconductor.

If we define the electrostatic potential outside the p-type depletion region as zero, i.e. \(\phi(x = -w_p) = 0 \), then the electrostatic potential can be given by Equation 2.
\[\phi = \begin{cases}
\frac{N_A e}{2 \varepsilon_0 \varepsilon_r} (x + w_p)^2 & \text{if } -w_p < x < 0 \\
\Delta \phi_0 - \frac{e N_D}{2 \varepsilon_0 \varepsilon_r} (x - w_n)^2 & \text{if } 0 < x < w_n
\end{cases} \] (2)

Where \(\Delta \phi_0 \) is given by Equation 3:

\[\Delta \phi_0 = \frac{e}{2 \varepsilon_0 \varepsilon_r} \left(N_A w_p^2 + N_D w_n^2 \right) \] (3)

The depletion widths are given by Equations (4) and (5):

\[w_p = \left(\frac{2 N_D \Delta \phi_0 \varepsilon_0 \varepsilon_r}{e N_A (N_D + N_A)} \right)^{1/2} \] (4)

\[w_n = \left(\frac{2 N_A \varepsilon_0 \varepsilon_r \Delta \phi_0}{e N_D (N_D + N_A)} \right)^{1/2} \] (5)

a) Integrate Equation 1 to show that the electrostatic potential (\(\phi \)) as a function of position (\(x \)) is given by Equation 2. Hint: since we define the electrostatic potential as \(\phi = 0 \) at \(x = -w_p \), you should integrate the electric field from left-to-right across the whole junction, to the position you are interested in. [7 marks]

b) By asserting that electric field is continuous at \(x = 0 \), use Equations 1, 2 and 3 to show that the width of the depletion regions (\(w_p \) and \(w_n \)) are given by Equations 4 and 5. [4 marks]

Question 2 [6 marks]:

a) Figure 2 shows current-density-voltage characteristics (\(J \) vs \(V \)) of an example solar cell under illumination from \(P = 100 \text{ mW/cm}^2 \) light. This \(J \) vs \(V \) data is available to download using the link here. Using this data, determine the power conversion efficiency of this solar cell. Give your answer in percent. [6 marks]

![Figure 2](image-url)
Question 3 [8 marks]:

a) When we use the word “oxide” in the context of metal-oxide semiconductor (MOS) capacitors, what type of electronic properties do we mean? [1 mark]

b) If we operate an n-type MOS capacitor in accumulation mode, what type of charge carriers would you expect to observe at the interface between the semiconductor and insulator? [1 mark]

c) If we operate an n-type MOS capacitor in depletion mode, what type of charge carriers would you expect to observe at the interface between the semiconductor and insulator? [1 mark]

d) If we operate an n-type MOS capacitor in inversion mode, what type of charge carriers would you expect to observe at the interface between the semiconductor and insulator? [1 mark]

e) Figure 3 shows the capacitance per unit area of a MOS capacitor measured as a function of applied voltage (V) using a low frequency probe and a high frequency probe. From this data determine the capacitance the depletion region of this capacitor. Give your answer in μF/cm². [2 marks]

f) Say we are carrying out a capacitance measurement on a silicon-based MOS capacitor. For this capacitor, the thermal generation time is known to be 1 µs, the depletion width can be approximated to be 500 nm, and the capacitance per unit area of the oxide is 20 nF/cm². The intrinsic carrier concentration of silicon is 10^{10} cm⁻³. Determine the voltage ramp-rate required to observe inversion in this semiconductor. Give your answer in V/s. [2 marks]