Lecture 8
Carrier Lifetime
Schroder: Chapter 7

Announcements
Homework 1/5:
• Due Now.
• I will return it on 22nd April.
Homework 2/5:
• Will be posted online after class.
• Due Friday 24th April at the start of the lecture (09:00am).
• I will return it one week later (1st May).
Lecture 8

• Lifetime Overview.
• Shockley-Read-Hall Recombination.
• Radiative Recombination.
• Auger Recombination.
• Lifetime Revisited.

Lifetime Overview
Lifetime

• In electronic devices we inject carriers and typically expect them to travel as far as possible.

• In an idealized situation we expect every carrier to reach the opposite electrode and be extracted.

• Today’s lecture is concerned with the fact that this is not the case.

Lifetime

• Carriers that are being transported can recombine while in a device.

• The average time that carriers last is referred to as the lifetime.
Lifetime

- Values of recombination and lifetime **heavily** dependent on the situation.
- They are probably one of the most ambiguous parameters in the field.
- Lifetime depends on:
 - Material type.
 - Carrier density.
 - Temperature.
 - Illumination density.
 - Point defect density.
 - Device Type.
 - Surface properties.
 - Grain boundaries.
 - Bias conditions.
 - Many others...

Recombination Lifetime

- In this lecture we provide a simplified overview.
- According to Schroder there are two types of lifetime:

 - **Recombination Lifetime**
 - **Generation Lifetime**

- Generation lifetime is basically the time it takes to thermally create carriers. We will not study it today.
Recombination Lifetime

- Today we are talking about electronic devices here (mainly transistors).
- In this context we are talking about the lifetime of minority carriers in a sea of majority carriers.
- For example, we are concerned with the lifetime of electrons in a p-type semiconductor.

Aside: Solar Cells

- Terminology depends on device type.
- In solar cells carrier lifetime is very important.
- Both holes and electrons need enough time to make it to electrodes.
- Lifetime in the context of solar cells is normally specified by carrier type: τ_e or τ_h.
- If the term “lifetime” is used without specifying a carrier type it will refer to the carrier with the longest lifetime.
Lifetime

- But today we are talking about the recombination lifetime (τ_r) of minority carriers in electronic devices.
- We will typically talk about electrons in a p-type semiconductor, but the concepts are identical to the opposite situation.
- The recombination lifetime is separated into three terms:

$$\frac{1}{\tau_r} = \frac{1}{\tau_{SRH}} + \frac{1}{\tau_{rad}} + \frac{1}{\tau_{Auger}}$$

Lifetime

- A convenient way to visualize these three processes is to consider the energy band diagram.
- Consider how energy is conserved in each case.
Lifetime

- We can also consider the number of charge-carriers involved in the process.

\[
\begin{align*}
\text{~SRH (monomolecular)} & \quad \text{Radiative (bimolecular)} & \quad \text{Auger (trimolecular)} \\
\text{Carrier} & \quad \text{Hole} & \quad \text{Hole} \\
\text{Trap} & \quad \text{Electron} & \quad \text{Electron}
\end{align*}
\]

Shockley-Read-Hall Recombination
SRH Recombination

- There are four types of trap emission and capture processes. Same notation as Lecture 6.

Net Capture Rate

- The net rate of electron capture into a trap, U_n, is given by the rate of electron trap capture minus the rate of electron trap emission:

$$U_n = r_a - r_b$$

- Recall from Lecture 6 we can describe the electron capture rate by:

$$r_a = \sigma_n v_{th} n N_T (1 - f_T)$$

- And the electron emission rate by:

$$r_b = e_n N_T f_T$$
Parameters

\[r_a = \sigma_n v_{th}^e n N_T (1 - f_T) \quad r_b = e_n N_T f_T \]

- \(r_a \) = Rate of electron capture.
- \(\sigma_n \) = Electron capture cross-section (e.g. cm\(^2\)).
- \(v_{th}^e \) = Electron thermal velocity.
- \(n \) = Delocalized electron density in conduction band.
- \(N_T (1 - f_T) \) = Number density of empty traps.
- \(r_b \) = Rate of electron emission.
- \(e_n \) = Emission coefficient for electrons
- \(N_T f_T \) = Number density of filled traps.

e\(^-\) Emission coefficient

- We also know from Lecture 6, that we can describe the emission coefficient in terms of temperature and band energies:

\[e_n = \sigma_n v_{th}^e N_c \exp \left(- \frac{E_C - E_T}{k_B T} \right) \]

- \(N_c \) = Number density conduction band states.
- \(E_C \) = Conduction band energy.
- \(E_T \) = Trap state energy.
- \(k_B \) = Boltzmann Constant.
- \(T \) = Temperature.
Net Capture Rate

• Substituting this back into our equation for net capture rate:

\[r_a = \sigma_n v_{th} n N_T (1 - f_T) \]
\[r_b = e_n N_T f_T \]

\[U_n = r_a - r_b = \sigma_n v_{th} n N_T (1 - f_T) - e_n N_T f_T \]

\[e_n = \sigma_n v_{th} N_c \exp \left(-\frac{E_C - E_T}{k_b T} \right) \]

\[U_n = \sigma_n v_{th} \left[n N_T (1 - f_T) - N_c \exp \left(-\frac{E_C - E_T}{k_b T} \right) N_T f_T \right] \]
Net Capture Rate - Holes

- We can (but won’t) derive a similar expression for the net capture rate of holes:
 \[U_p = \sigma_p v_{th}^h N_T[p f_T - p_1 (1 - f_T)] \]
 - \(\sigma_p \) = Hole capture cross-section (e.g. \(\text{cm}^2 \)).
 - \(v_{th}^h \) = Hole thermal velocity.
 - \(p \) = Delocalized hole density in valence band.
 - \(p_1 \) = concentration of holes in the valence band when the Fermi level is positioned at the trap energy level.

Steady-State Trap Occupancy

- Consider the *steady-state* situation in which the net rates of electron and hole capture are equal:
 \[U_n = U_p \]
 - Under these conditions we can define the steady-state trap occupancy: \(f_T \rightarrow f_T^{(ss)} \).
 - This turns out to be:
 \[f_T^{(ss)} = \frac{\sigma_n n + \sigma_p p_1}{\sigma_n (n + n_1) + \sigma_p (p + p_1)} \]
 - Where we have equated hole and electron thermal velocities:
 \[v_{th}^e = v_{th}^h = v_{th} \]
SRH Capture Rate

- We define the Shockley-Read-Hall capture rate \(U_{SRH} \) as the steady-state situation in which the net rates of electron and hole capture are equal:

\[
U_n = U_p = U_{SRH}
\]

- It turns out this can be expressed as:

\[
U_{SRH} = \frac{\sigma_n \sigma_p v_{th} N_T (pn - n_i^2)}{\sigma_n (n + n_1) + \sigma_p (p + p_1)}
\]

- This is a very important relationship which is used extensively in processes involving SRH generation and recombination.

Excess Carrier Concentration

- If we go back to our steady-state trap occupancy factor:

\[
f_T^{(ss)} = \frac{\sigma_n n + \sigma_p p_1}{\sigma_n (n + n_1) + \sigma_p (p + p_1)}
\]

- We identify that this is not equal to the Fermi-Dirac distribution:

\[
f_T^{(ss)} \neq \frac{1}{1 + \exp\left(\frac{E_T - E_F}{k_B T}\right)}
\]

- \(f_T^{(ss)} \) is a non-equilibrium occupancy.
- Because carriers are constantly being trapped and detrapped, they are not Fermi-distributed.
Excess Carrier Concentration

- We can describe our non-equilibrium carrier distributions as perturbations from equilibrium (i.e. without the presence of the trap):

 \[n = n_0 + \Delta n \quad \text{and} \quad p = p_0 + \Delta p \]

- \(n \) = Non-equilibrium electron density.
- \(p \) = Non-equilibrium hole density.
- \(n_0 \) = Equilibrium electron density.
- \(p_0 \) = Equilibrium hole density.
- \(\Delta n \) = Excess electron density.
- \(\Delta p \) = Excess hole density.

This formulation allows us to re-write \(U_{SRH} \).

\[U_{SRH} = \frac{\sigma_n \sigma_p v_{th} N_T (pn - n_i^2)}{\sigma_n (n + n_1) + \sigma_p (p + p_1)} \]

- Start by enforcing charge neutrality on our excess carriers:

 \[\Delta n = \Delta p \]

- Turns out this is a valid assumption as long as one of: \(n_0, p_0, n_1, p_1 \) is large compared to \(N_T \).
- See the Schroder or W. Shockley and W.E. Read, Phys. Rev. 87, 835 (1952) for why this is the case.
Excess Carrier Concentration

- Look at \(p_n - n_i^2 \) term of \(U_{SRH} \):
 \[
 p_n - n_i^2 = (n_0 + \Delta n)(p_0 + \Delta p) - n_i^2
 \]
 \[
 p_n - n_i^2 = n_0p_0 + n_0\Delta p + \Delta np_0 + \Delta n\Delta p - n_i^2
 \]
- Identify the equilibrium carrier density as the intrinsic carrier density:
 \[
 n_0p_0 = n_i^2
 \]
 \[
 p_n - n_i^2 = n_0\Delta p + \Delta np_0 + \Delta n\Delta p
 \]
- Enforce \(\Delta n = \Delta p \):
 \[
 p_n - n_i^2 = n_0\Delta n + \Delta np_0 + \Delta n\Delta n
 \]
 \[
 p_n - n_i^2 = (n_0 + p_0 + \Delta n)\Delta n
 \]

SRH lifetime

- Substitute \(p_n - n_i^2 \) back into \(U_{SRH} \):
 \[
 U_{SRH} = \frac{\sigma_n\sigma_p v_{th} N_T (p_n - n_i^2)}{\sigma_n(n + n_1) + \sigma_p(p + p_1)}
 \]
 \[
 U_{SRH} = \frac{\sigma_n\sigma_p v_{th} N_T \Delta n(n_0 + p_0 + \Delta n)}{\sigma_n(n + n_1) + \sigma_p(p + p_1)}
 \]
- And define the SRH lifetime:
 \[
 \tau_{SRH} = \frac{\tau_p(n_0 + n_1 + \Delta n) + \tau_n(p_0 + p_1 + \Delta p)}{p_0 + n_0 + \Delta n}
 \]
 \[
 \tau_p = \frac{1}{\sigma_p v_{th} N_T}
 \]
 \[
 \tau_n = \frac{1}{\sigma_n v_{th} N_T}
 \]
 \[
 U_{SRH} = \frac{\Delta n}{\tau_{SRH}}
 \]
Important Limits

- **Low-Level Injection:**
 - The excess minority carrier concentration is much less than the equilibrium (intrinsic) majority carrier concentration.
 - For p-type material:

 \[\Delta n \ll p_0 \]

 \[\tau_{SRH}^{(ll)} \approx \tau_n \]

 - For n-type material:

 \[\Delta p \ll n_0 \]

 \[\tau_{SRH}^{(ll)} \approx \tau_p \]

- **Very High Level Injection:**
 - Although this approximation is extensively employed for low-level injection conditions, note that it is only valid when the material is strongly of one type (e.g., when \(p_0 \gg n_0 \) for a p-type semiconductor) and when the trap location is sufficiently deep in the bandgap (e.g., when \(p_0 \gg p_1 \) and \(p_0 \gg n_1 \)).
 - For p-type material:

 \[\Delta n \gg p_0 \]

 \[\tau_{SRH}^{(hl)} \approx \tau_n + \tau_p \]

 - For n-type material:

 \[\Delta p \gg n_0 \]

 \[\tau_{SRH}^{(hl)} \approx \tau_n + \tau_p \]
Radiative Recombination

Overview

- Sometimes called bimolecular recombination.
- Basically just a hole and electron annihilating:

Energy Picture

Spatial Picture

\[h \nu \]
Radiative Recombination

- This is an important process for a direct bandgap semiconductor, but is usually of no importance in an indirect semiconductor, unless it is extraordinarily pure.

- In an indirect semiconductor, a transfer of momentum is required for recombination (and generation).

\[\nu = \frac{E_G}{h} \]

\(\nu\) ≠ \(\nu\)

frequency

Planck Constant

Band Gap

“nu” ≠ \(\nu\)
Recombination Rate

- The rate of radiative recombination rate \(R_{\text{rad}} \) is proportional to a product of the non-equilibrium carrier densities
 \[
 R_{\text{rad}} = \alpha n p
 \]
- It has units cm\(^{-3}\)s\(^{-1}\) (c.f. s\(^{-1}\) for SRH rate).
- We can show (but won’t) that:
 \[
 \alpha = \frac{R}{n_i^2}
 \]

- \(R \) is the recombination rate in thermal equilibrium.

Recombination Rate

\[
R = \frac{32\pi^2 c^3 (k_B T)^4}{h^4} \int_0^\infty \frac{k\hat{n}^3 x^3}{e^x - 1} \, dx
\]

- \(R \) is the recombination rate in thermal equilibrium.
- \(c \) is the speed of light in a vacuum.
- \(k_B \) is the Boltzmann Constant.
- \(h \) is the Planck Constant.
- \(k \) is the imaginary part of the index of refraction (i.e., the extinction coefficient)
- \(\hat{n} \) is the index of refraction (i.e., the real part of the complex index of refraction).
Recombination Rate

\[R = \frac{32\pi^2 c^3 (k_B T)^4}{h^4} \int_0^\infty \frac{k_B T n^3 x^3}{e^x - 1} \, dx \]

- Where:
 \[x = \frac{h\nu}{k_B T} \]

- \(\nu \): Photon frequency.
- So \(x \) is just optical energy normalized for thermal energy.
- \(R \) depends on the optical properties of the material (i.e., \(n \) and \(k \)) and on the temperature.

Replacing \(\alpha \) with \(R \) in the previous expression for the radiative recombination rate gives:

\[R_{\text{rad}} = \alpha n p \]

\[\alpha = \frac{R}{n_i^2} \]

Replacing nonequilibrium carrier concentrations by their equivalent excess carrier concentration expressions can get this into a more useful form:

\[n = n_0 + \Delta n \]

\[p = p_0 + \Delta p \]
Recombination Rate

\[n = n_0 + \Delta n \quad p = p_0 + \Delta p \]

\[R_{\text{rad}} = \frac{R}{n_i^2} np \]

\[R_{\text{rad}} = \frac{R}{n_i^2} (n_0 + \Delta n)(p_0 + \Delta p) \]

\[R_{\text{rad}} = \frac{R}{n_i^2} (n_0p_0 + n_0\Delta p + p_0\Delta n + \Delta n\Delta p) \]

- Again, use \(n_i^2 = n_0p_0 \):

\[R_{\text{rad}} = R + \frac{R}{n_i^2} (n_0\Delta p + p_0\Delta n + \Delta n\Delta p) \]

Net Rate of Recombination

- The net rate of radiative recombination is defined as:

\[U_{\text{rad}} = R_{\text{rad}} - R = \frac{R}{n_i^2} (n_0\Delta p + p_0\Delta n + \Delta n\Delta p) \]

- This is the most general solution of radiative recombination.
- To make further progress we enforce charge neutrality: \(\Delta n = \Delta p \).

- Where:

\[\tau_{\text{rad}} = \frac{1}{B(p_0 + n_0 + \Delta n)} \]

\[B = \frac{R}{n_i^2} \]

ECE / CHE 613 – Electronic Materials Characterization
Spring 2020 - John Labram
Radiative Recombination Coefficient

- The parameter B is called the radiative recombination coefficient, and is typically quoted in units of cm3s$^{-1}$.
- B depends on the optical properties of the semiconductor of interest and the semiconductor.
- Typical values (at room temperature):

<table>
<thead>
<tr>
<th>Material</th>
<th>B (cm3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>4.73×10^{-15}</td>
</tr>
<tr>
<td>Ge</td>
<td>5.2×10^{-14}</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.7×10^{-10}</td>
</tr>
<tr>
<td>GaP</td>
<td>5.4×10^{-14}</td>
</tr>
<tr>
<td>InP</td>
<td>1.8×10^{-11}</td>
</tr>
<tr>
<td>InSb</td>
<td>4.6×10^{-11}</td>
</tr>
<tr>
<td>InGaAsP</td>
<td>4×10^{-10}</td>
</tr>
</tbody>
</table>

Radiative Recombination Coefficient
• The parameter B is called the radiative recombination coefficient, and is typically quoted in units of cm3s$^{-1}$.
• B depends on the optical properties of the semiconductor of interest and the semiconductor.
• Typical values (at room temperature):

- Lower numbers = faster recombination
- Higher numbers = slower recombination

High and Low-Level Limits

- Low-Level Injection:
 $\Delta n \ll p_0$
 $\tau_{rad}^{(ll)} \approx \frac{1}{Bp_0}$

- Very High Level Injection:
 $\Delta n \gg p_0$
 $\tau_{rad}^{(hl)} \approx \frac{1}{B\Delta n}$
Photon Recycling

- Before we conclude it is worth considering what happens to the photon that is emitted.
- In some systems (e.g. GaAs and perovskites) the photon can be re-absorbed: **Photon Recycling**.

Auger Recombination
Auger Recombination

- In a band-to-band Auger recombination process, conservation of potential energy associated with the annihilation of an electron-hole pair is achieved by transferring this potential energy to a third carrier, making it more energetic.
- There are two types of band-to-band Auger process, which can be distinguished as \(eeh \) or \(ehh \).
eeh-Auger Recombination

- First, we consider the *eeh*-Auger recombination process.
- Since we have two conduction band electrons and one valence band hole participate in such a process, we expect the rate \(R_{eeh} \) of such an Auger process to be proportional to the corresponding nonequilibrium carrier densities:
 \[
 R_{eeh} = C_n p n^2
 \]
- Where \(C_n \) is the proportionality constant for *eeh*-Auger recombination.

- In equilibrium, the rate of *eeh*-Auger recombination and generation must be equal.
- Equivalently, the net rate of *eeh*-Auger recombination must be equal to zero in equilibrium.
- Recognizing this allows us to write the net rate of *eeh*-Auger recombination as:
 \[
 U_{eeh} = C_n (p n^2 - p_0 n_0^2)
 \]
eeh-Auger Recombination

\[U_{eeh} = C_n (pn^2 - p_0 n_0^2) \]

- Substituting nonequilibrium carrier concentrations by their equivalent excess carrier expressions and assuming charge neutrality:
 \[
 n = n_0 + \Delta n \\
 p = p_0 + \Delta p \\
 \Delta n = \Delta p
 \]

- Leads to:
 \[
 U_{eeh} = C_n (2p_0 n_0 + p_0 \Delta n + n_0^2 + 2n_0 \Delta n + \Delta n^2) \Delta n
 \]

ehh-Auger Recombination

- We can show, via a similar, analysis that the net rate for electron-hole-hole Auger recombination:
 \[
 U_{ehh} = C_p (2p_0 n_0 + n_0 \Delta n + p_0^2 + 2p_0 \Delta n + \Delta n^2) \Delta n
 \]

- Where \(C_p \) is the proportionality constant for ehh-Auger recombination.
Auger Lifetime

- Finally, the Auger lifetime can be given as:

\[\tau_{\text{Auger}} = \frac{\Delta n}{U_{eeh} + U_{ehh}} \]

- Low-Level Injection:

\[\Delta n \ll p_0 \]

\[\tau^{(ll)}_{\text{Auger}} \approx \frac{1}{C_p p_0^2} \]

- Very High Level Injection:

\[\Delta n \gg p_0 \]

\[\tau^{(hl)}_{\text{Auger}} \approx \frac{1}{(C_n + C_p)\Delta n^2} \]

Lifetime Revisited
Lifetime

- Recall that we began this lecture with the recombination lifetime, τ_r, which is the average time that a nonequilibrium minority carrier exists in a sea of majority carriers before it recombines.

\[
\frac{1}{\tau_r} = \frac{1}{\tau_{SRH}} + \frac{1}{\tau_{rad}} + \frac{1}{\tau_{Auger}}
\]

- Most of this lecture has been devoted to obtaining expressions for: τ_{SRH}, τ_{rad}, τ_{Auger}.

- Now that we have these expressions, we are able to assess the lifetime, usually the minority carrier lifetime, using these expressions.

- As a last thought, recognize that there are two types of semiconductor device types, **bipolar** and **unipolar**.

- Bipolar devices include pn junctions, bipolar junction transistors and thyristors.

- Minority carrier lifetime is extremely important for bipolar devices.

- In fact, bipolar devices may be categorized as devices whose basic operation is determined exclusively by minority carrier action.

- Unipolar devices include Schottky barriers and FETs.
Lifetime

- Minority carrier lifetime is not relevant for unipolar devices.
- However, majority carrier lifetime may be important for certain classes of unipolar devices, in which the semiconductor is lightly doped.

Next Time

- Surface Recombination.