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In the private language of perceptron workers: the.theore:;v;:;):d
siders a given a-type perceptron and a set of incoming signals .
into two disjoint classes. A "satisfactory" assignm.ent of Outpuulting
weights for the associator units is defined as an assignment rfs -
in a response +1 for signals of Class I and -1 for signals of Clas i- )
The theorem under discussion then states that, no matter what ?sst.ii:
ment of weights we begin with, the process of recursively_ re.':ldll“sinate
the weights by the method known as "error correction"” Wj1ll term e
after a finite number of corrections in a satisfactory ass1'gnrnent,f‘p-
viding any such satisfactory assignment exists. More briefly, a f1
nite number of corrections will teach the perceptron to perform any

: e i f
given dichotomy of signals, if the dichotomy is within the capacity ©
the perceptron at all.

S

This result can be translated into universally acceptable mathe-
matical language. Using the formulation of reference 1, the th.eoreme
reads as follows: We are given a set of vectors, Wiseeo, WN, IR 50:1_1
fixed finite dimensional Euclidean space. These are assumed to sa
isfy the single hypothesis that there exists a vector y such that

(W, y) >8>0, 3 D, 3G (1)

We then consider an infinite sequence

i k) 4
i1 12. i3""’ (1< i < N for every

such that each vector, W1s-.., Wy, Occurs infinitely often. We now
construct a sequence of vectors, v

00 VireeraVNseens recursively as
follows:

Yo is arbitrary,
and

nei if (vn_l. w,)> 8
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finite set of integers. That is, Egs. (1) and (4) cannot continue to hold
simultaneously for all n=1,2,3,...

Indeed, (1) alone implies that vy = vo + Wiy, *.

o
isfies (vp,y) 2(v,,y) + n6. Since (vp, y)2 < livall® - |

. F Win sat-
'y |[¥, this im-
plies that

v |f2cn’ (5)

for suitable choice of the positive constant C, providing n is suffi-
ciently large.

On the other hand, (4) alone implies that the integer-argument
function l']vnHz satisfies the difference inequality

2
“v -V '|2 =i e W) e . we ) < 284 VIS
| i |. n-1, n-1 i i i

n n n
where M = max (wj,, wj,).

Adding these inequalities for
n=1,2,3,..., we obtain

H"n\l.z < ""\’0'[12 + (26 + M)n, (6)

Clearly, (5) and (6) are incompatible for n sufficiently large.
T

The above argument is the discrete analog of the following the=
orem, which may seem more intuitive. Let v(t) be a curve in

m-space described by a smooth vector function of the continuous
variable t, such that

dv

(_dT’ 3) 2¢ >0 for some fixed vector y (1)

(i. e., the tangent vector to the curve lies on one side of a hyperplane);
and

1.4d 2 d
2 @ VO - ["‘”a ?‘tr] <830 54 h @)

: 2
(t.hat is, ||vl| grows at a bounded rate). Then an upper bound c¢ai be
given for b (and in particular (1)' and (2)' are only compatible over

a finite domain on the t-axis). The proof is virtually identical with
the discrete case: integrating (1)' between 0 and t we obtain

[V(t), Y] > [V(O), y] ot (7)
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while int i
egrating the differential inequality (2)' we obtain
|12
vt | < 20t+/|voll*.
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[v(0),y) # ct :
(7

| 2
llv(t)flz > (viv), y) .
(112
I IbfP
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.

We conclude with a few words about the geometrical interpreta-
tion of the assumption (1). These are stated without proof, and as-
sume familiarity with the theory of convex sets in Euclidean vector
spaces. The condition that there exists a vector y satisfying (1) is
precisely equivalent to the fact that the polyhedral cone C with gen-
erators wy,...,wy, defined as all vectors of the form A w1 t...
FANWN: 2120,..., AN 20, is a proper cone (i.e., that C never
contains both v and -v except for v= 0, or equivalently, C, apart
from its vertex, lies in the interior of a half space). It should be re-
marked that the existence of a vector y satisfying (1) with @ >0 is
neither stronger nor weaker than the requirement of the existence of
a vector y satisfying (1) with 8 = 0, i.e.,

(wi,’}‘.) >0 . (1l

In fact, y itself can serve for ¥ and conversely, given § satisfying
(1)" any sufficiently large positive multiple y = A¥,

for

AL S - e
min
A=l N

~

(w.,¥)
i

will satisfy (1)'. Condition (1)" is the customary way of specifying
that C be proper. For the continuous analog of (1)', the require-

ment that infinitely many vectors v' (1) satisfy (1)' is actually
Stronger than requiring

[v(t),y] Z 0 Zet i) (1)*

In fact, the left-hand side, though positive for each t, need not be
bounded away from zero. If (1)* is assumed to hold for O & 5 h

(equality permitted at b) and v'(t) is assumed continuous, then, as

In the finite case, it is again true that (1)* and (1) are precisely
equivalent,

_ The cone C of all vectors v such that (w,v) >0 for all
W in C or equivalently such that

(wi,v)go, i 3 lgeat Y (10)

is callt.ad the dual cone to C; its interior consists of all v for which
every inequality in (10) is strict. The bigger C is, the smaller C*
1s, and vice versa, but in general, neither need include the other.
F‘or example, when C is a half space, C* is a half line; when C
'8 proper, C* has an interior, and indeed the § of (1)!' is in the
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interior of C*
C*. If C* has an interior, C and the interor of C*

overlap. As al
ready observed, if ¥ is in the interior of C*, thena
(1). Let the set of vectors

suitab ;

sausf;fnzo(sf)t i: e multiple of y will satisly

The relation be(: denoted by D, whichisa subset of the interior of (6
S — youn (1) and the dual cone defined by (10) may be sum-
and only if C* ows: (1) has a solution (that is, D 18 non-empty) if

Tyhe C* has an interior.
e
rror correction procedure {s a recursive construction of a

vector in D of the form
k Frp il
Wy Heas ke¥y

occurred in the jrredundant

n of the correction process.

whe re 3
k; is the number of times W;
nstruction algorithm}

tra
Th‘:nli'?eg r:equ.ence before the terminatio
is aSsurede;nStenCe of such a vector (without a ¢0
In geng :11.9 faﬂ that C and D overlap.
Behner aone f'_t e .1f (1) is fulfilled, §0 that wl,...,w generate 3
cone (which 'thl will happen that someé subset will generate the same
S O th'en has the same dual c#), and it suffices t0 restrict
accelerate th o= S“'b_s"-‘t {n constructing the training sequence: 0
for correcti e termination of the correction process, one shc_)uld 1.15e
of C#*, and = 'those w's which are themselves nearest the interior
+ woy, ’the S‘Whlch are as long as possible. If, for example, W3 = V1
cessive ad dJ:n_gle addition of W3 will accomplish a8 much a8 thfe suc-
omy is with?hons of wy and Wa- i a dichot-
duces to Whm the combinatorial capacity of an
or not C iether or not C* hasan interior, ©
ferent c s proper. This question 18 discussed
ontext by Joseph and Hay! and Keller.
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