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140 personal results 0,00
Machine learning - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Machine_learning

Machine learning, a branch of artificial intelligence, is about the construction and study
of systems that can learn from data. For example, a machine learning ...

List of machine learmning - Category:Machine learing - Machine Learning (journal)

Machine Learning | Coursera

https://www.coursera.org/course/ml

Machine learning is the science of getting computers to act without being explici*"
programmed. In the past decade, machine learning has given us self- driving ...

Andrew Rosenberg and Renee Blitzer +1'd this

Machine Learning Department - Carnegie Mellon University
www.ml.cmu.edu/

Large group with projects in robot learning, data mining for manufacturing and in
multimedia databases, causal inference, and disclosure limitation.
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Machine Learning is Everywhere

machine learnina would be worth ten Microsofts” ( Bgll Gates)

@) AlphaGo Master v
File Edit Settings V

4
l Move 215 (B L10)
White to play IO!S
0 brothers
llsan

Komi 7.5 HO




Al Subfields and Breakthroughs
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The Future of Software Engineering

® “See, when Al comes, I'll be long gone (being replaced by autonomous cars)
but the programmers in those companies will be too, by automatic program
generators.” --- an Uber driver to an ML prof

Uber uses tons of Al/ML.:
route planning, speech/dialog,
recommendation, etc.




Machine Learning Failures
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B
lﬂm

£




Machine Learning Failures

clear evidence that AI/ML is used in real life.



® Part |l: Basic Components of Machine Learning Algorithms;
Different Types of Learning



VVhat is Machine Learning

® Machine Learning = Automating Automation
® Getting computers to program themselves
® Let the data do the work instead!

Traditional Programming
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No, more like gardening

= Algorithms
* Nutrients = Data
 Gardener =You

» Plants = Programs

“There is no better data than more data”
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ML in 2 Nutshell

® Tens of thousands of machine learning algorithms

® Hundreds new every year

® Every machine learning algorit
—Representation
—Evaluation

—Optimization

ML Arxiv Papers per Year
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Representation

® Separating Hyperplanes

® Support vectors

® Decision trees

® Sets of rules / Logic programs

® |[nstances (Nearest Neighbor)

® Graphical models (Bayes/Markov nets)
® Neural networks

® Model ensembles

® Etc.
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® Accuracy

® Precision and recall
® Squared error

® Likelihood

® Posterior probability
® Cost / Utility

® Margin

® Entropy

® K-L divergence

® Ftc.

Evaluation
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Optimization

® Combinatorial optimization

® E.g.: Greedy search, Dynamic programming
® Convex optimization

® E.g.: Gradient descent, Coordinate descent

® Constrained optimization

® E.g.: Linear programming, Quadratic programming
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Gradient Descent

® if learning rate is too small, it'll converge very slowly

e if learning rate is too big, it'll diverge
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Fig. 6. Gradient descent for different learning rates.



Types of Learning

® Supervised (inductive) learning

® Jraining data includes desired outputs
® Unsupervised learning

® [raining data does not include desired outputs
® Semi-supervised learning

® Training data includes a few desired outputs

® Reinforcement learning

® Rewards from sequence of actions

rules _white

win
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Supervised Learning

® Given examples (X, f(X)) for an unknown function f

® Find a good approximation of function f
® Discrete f(X): Classification (binary, multiclass, structured)

® Continuous f(X): Regression
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When is Supervised Learning Useful

® when there is no human expert
® input x: bond graph for a new molecule
® output f(x): predicted binding strength to AIDS protease
® when humans can perform the task but can’t describe it
® computer vision: face recognition, OCR
® where the desired function changes frequently
® stock price prediction, spam filtering
® where each user needs a customized function

® speech recognition, spam filtering

18



Supervised Learning: Classification

® input X: feature representation (“observation™)
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Supervised Learning: Classification

® input X: feature representation (“observation™)
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Supervised Learning: Regression

® |inear and non-linear regression

® overfitting and underfitting (same as in classification)
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What We'll Cover (updated in 2019)

® Unit |:Intro to ML, Nearest Neighbor Review of Linear Algebra, numpy, etc.
® week |:intro to ML, over/under-generalization, k-NN
® week 2:tutorials on linear algebra, numpy, plotting, and data processing
® Unit 2: Linear Classification and Perceptron Algorithm
® week 3: perceptron and convergence theory
® week 4: perceptron extensions, practical issues, and logistic regression

® Unit 3 (weeks 5-6): Regression and Housing Price Prediction
® Unit 4 (weeks 7-8): Support Vector Machines and Kernels

® Unit 5 (weeks 9-10): Applications: Text Categorization and Sentiment Analysis
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® Part lll: Training, Test, and Generalization Errors; Underfitting and Overfitting;
Methods to Prevent Overfitting; Cross-Validation and Leave-One-Out
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Training, Test, & Generalization Errors

® in general, as training progresses, training error decreases

® test error initially decreases, but eventually increases!

at that point, the model has overfit to the training data (memorizes noise or outliers)

® but in reality, you don’t know the test data a priori (“blind-test”™)
® generalization error: error on previously unseen data
® expectation of test error assuming a test data distribution

® often use a held-out set to simulate test error and do early stopping
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® underfitting / overfitting occurs due to under/over-training (last slide)

® underfitting / overfitting also occurs because of model complexity

Width
3

Under/Over-fitting due to Model

® underfitting due to oversimplified model (“as simple as possible, but not simpler!™)

® overfitting due to overcomplicated model (memorizes noise or outliers in data!)
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Ways to Prevent Overfitting

® use held-out training data to simulate test data (early stopping)

® reserve a small subset of training data as “development set”
(aka “validation set”,“dev set”, etc)

® regularization (explicit control of model complexity)

® more training data (overfitting is more likely on small data)

® assuming same model complexity

0
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Leave-One-Out Cross-Validation

® what’s the best held-out set!?
® random!?! what if not representative!

® what if we use every subset in turn?

® |eave-one-out cross-validation
® train on all but the last sample, test on the last; etc.
® average the validation errors

® or divide data into N folds,
train on folds |..(N-1), test on fold N; etc.

® this is the best approximation of generalization error
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® Part IV: k-Nearest Neighbor Classifier
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Nearest Neighbor Classifier

® for any test example x, assign its label using the majority vote of the closest

neighbors of x in training set « Al
. . . - , oy
extremely simple: no training procedure! oy
® |-NN: extreme overfitting (extremely non-linear); k-NN is better ]
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® as k increases, the boundaries become smoother
k=3: red
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Quiz Question

® what are the leave-one-out cross-validation errors for the following data set,
using |-NN and 3-NN?

(@) Consider the following data set with two real-valued inputs x (i.e. the
coordinates of the points) and one binary output y (taking values + or -).
We want to use k-nearest neighbours (K-NN) with Euclidean distance to
predict y from Xx.

+ + — =

+  + — =

Calculate the leave-one-out cross-validation error of 1-NN on this data set.

That is, for each point in turn, try to predict its label y using the rest of the
points, and count up the number of misclassification errors.

Ans: 1-NN: 5/10; 3-NN: 1/10



EFuclidean vs. Manhattan Distances (added in 2019)

k-NIN can use either Euclidean (default) or Manhattan distances
(both are special cases of £,-norm or Minkowski distance)
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Bonus [rack: Deep Learning (added in 2019)

® 2019 Turing Award (Nobel prize in CS) goes to the “big three” of deep learning

® deep neural nets born in mid-1980s (or as early as 1960s) with backpropagation
® but it didn’t work at that time, and quickly died out by mid-1990s
® rebirth in 2006 (Hinton) and landmark win in 2012 (Hinton group’s AlexNet on ImageNet)
® what changes in these ~30 years “suddenly” made it work!?

® according to Hinton: just a lot more data and computing power! (e.g. GPUs)

® rebranded as “deep learning” (which was controversial); super hot after 2012

® what’s the difference between deep learning and pre-DL ML?
® CS = automation; ML = automating CS; DL = automating ML = automation?

® you’ll understand this around week 4; but this course will not teach DL per se -



® PartV:viewing and processing HW|I data on the terminal
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HW | :Adult Income >50K!?

training/dev sets:

Age, Sector, Education, Marital Status, Occupation, Race, Sex, Hours, Country, Target
40, Private, Doctorate, Married-civ-spouse, Prof-specialty, White, Female, 60, United-States, >50K
44, Local-gov, Some-college, Married-civ-spouse, Exec-managerial, Black, Male, 38, United-States, >50K
55, Private, HS-grad, Divorced, Sales, White, Male, 40, England, <=50K

test data (semi-blind):
30, Private, Assoc-voc, Married-civ-spouse, Tech-support, White, Female, 40, Canada, 2272

® ) numerical features: age and hours-per-week

® option |: keep them as numerical features

® option 2: we can treat them as binary features

e.g.,age=22, hours=38, ...

® / categorical features: convert to binary features

® country, race, occupation, etc.

® e.g, country=United_States, education=Doctorate,...



Interesting Facts in HVV | Data

only ~25% positive (>50K); data was from 1994 (~$27K per capita)

education is probably the single most important factor
® education=Doctorate is extremely positive (80%)
® education=Prof-school is also very positive (75%)
® education=Masters is also positive (55%)

® education=9th (high school dropout) is extremely negative (6%)
“married” is good (45%), ‘never married” is extremely bad (5%)

“self-emp-inc” is the best sector (59%), but “self-emp-not-inc” 30%

hours-per-week=1 is 100% positive; country=Iran is 70% positive

exec-managerial and prof-specialty are best occupations (48% / 46%)

interesting combinations (e.g."edu=Doc and sector=self-emp-inc”: 100%)



Looking at HVV | data on terminal

® you are highly recommended to use Linux or Mac terminals

® basic familiarity with the terminal is a must for a data scientist!

$ cat income.train.txt.5k | cut -f 2 -d ','| sort | uniq -c

150 Federal-gov
340 Local-gov
3694 Private
183 Self-emp-inc
424 Self-emp-not-inc
208 State-gov
1 Without-pay

$ cat income.train.txt.5k |
646
$ cat income.train.txt.5k |
294

$ cat income.train.txt.5k |
17
$ cat income.train.txt.5k |
90

sector=Self-emp-inc: 59.02%
education=Masters: 55.38%
education=Prof-school: 74.70%
education=Doctorate: 80.00%
hours-per-week=99: 60.00%
hours-per-week=68: 100.00%
hours-per-week=1: 100.00%
country-of-origin=Taiwan: 58.33%
country-of-origin=Iran: 70.00%
country-of-origin=Cambodia: 66.67%

grep "Prof-spec" | wc -1

grep "Prof-spec" | grep -c ">

sort -nkl | head -1

sort -nkl | tail -1
36



® Part VI-VIl: data-preprocessing: binarization

® please watch the videos (weekl, parts 6-7) and try the ipython notebook from
the course homepage

® you should start working on HW| as early as possible!
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