Lecture 12: Oxidation
Chapter 3 Jaeger

Last Time

• Before the break we covered the basics of diffusion.
Useful Links

This subject is widely taught, and online notes are available from many sources. Here are some good examples:

UC Berkeley Notes:
- http://www-inst.eecs.berkeley.edu/~ee143/fa10/lectures/Lec_06.pdf

UC Santa Barbara Notes:
- https://engineering.ucsb.edu/~sumita/courses/Courses/ME141B/ME141B_lecture_4_F10.pdf

Lecture 11

- Oxide Properties.
- Oxidation Process.
- Oxide Growth Model.
- Factors Influencing Oxidation Rate.
Oxide Properties

Oxidation

- Reasons that SiO$_2$ so widespread in VLSI:
 - Forms directly from the Si substrate upon exposure to oxygen containing species (O$_2$ or H$_2$O):
 \[
 \text{Si(S)} + \text{O}_2(G) \rightarrow \text{SiO}_2(S) \quad \text{“Dry”}
 \]
 \[
 \text{Si(S)} + 2\text{H}_2\text{O(L)} \rightarrow \text{SiO}_2(S) + 2\text{H}_2(G) \quad \text{“Wet”}
 \]
 - SiO$_2$ is a high quality electrical insulator (low interface trap density):
 - Thin (10-50 Å) gate oxide for MOS gate.
 - Thick (1000-2000 Å) field oxide for transistor isolation and barrier to dopant diffusion.
Other Compounds

- This is one of the main advantages of Si, and is the main reason why it is the commercial standard for semiconductors.

Germanium

![Graph of Germanium's Native Oxide Thickness vs Time](image)

Hu et al. “Native Oxidation Growth on Ge(111) and (100) Surfaces.” *Small* 4(6) (2008): 429.

GaAs

![Graph of GaAs's J-V Characteristics](image)

Structure of SiO₂

- Each Si surrounded tetrahedrally by 4 O atoms
- Open, amorphous structure.

![Structure of SiO₂](image)

- Density of SiO₂ < crystalline SiO₂:
 - Quartz = 2.65 gm/cm³.
 - Thermally grown oxide = 2.20 gm/cm³.
 - Silicon = 2.33 gm/cm³.
Properties of SiO$_2$

- Excellent electrical insulator.
 - Resistivity $> 10^{15}$ Ωcm.
 - Band gap ~ 8 eV.
 - Crucial in devices.

Properties of SiO$_2$

- High breakdown electric field strength.
 - >10 MV/cm.
Properties of SiO$_2$

- Stable:
 - Down to 10^{-9} Torr, $T > 900^\circ C$.
 - Conformal oxide growth on exposed Si surface.

- Good diffusion mask for common dopants:
 \[D_{SiO_2} \ll D_{Si} \]

- Excellent etch selectivity between Si and SiO$_2$.

Oxidation: Applications

• Oxide grown by oxidation is used at two important steps in chip manufacture.
 • Field oxide.
 • Gate oxide.

• **Field oxide:**
 • Field oxide isolates different transistors on a chip.

![Field oxide diagram]

Oxidation: Applications

• **Gate oxide**
 • Recall that the gate on a transistor works because the charge effects the holes and electrons across the oxide

![Gate oxide diagram]

• Currently the gate oxide is only 10 - 50 Å thick. (A sheet of paper is 1,000,000 Å thick!)
Oxidation Techniques

- There are a few other ways to grow oxides:
 - Thermal oxidation (heated in oxygen-rich environment).
 - Chemical vapor deposition (CVD).
 - Plasma anodization.
 - Physical vapor deposition (PVD).

- Thermal oxidation is by far the prevalent in industry.
 - Best quality oxide.
 - Typically used for insulation.
 - Unfortunately requires high temperature.
 - We will focus on this technique.
Thermal Oxidation

- Two approaches:
- Dry Oxidation (O_2):
 - Uses oxygen gas: $Si(S) + O_2(G) \rightarrow SiO_2(S)$
 - High quality.
 - Slow oxidation rate.
 - Small maximum thickness (i.e. gate oxide).
- Wet Oxidation (H_2O):
 - Uses water vapor: $Si(S) + 2H_2O(Vapor) \rightarrow SiO_2(S) + 2H_2(G)$
 - Diffusion speed is higher.
 - Lower quality.
 - Faster oxidation rate.

Oxidation: Mechanism

- The oxygen containing species must diffuse through the oxide layer to the unreacted silicon.
- This makes for a “cleaner” process.
Oxidation: Mechanism

- Oxygen reacts with silicon to form silicon dioxide:
 \[
 \text{Si(S)} + \text{O}_2(G) \rightarrow \text{SiO}_2(S) \\
 \text{Si(S)} + 2\text{H}_2\text{O(Vapor)} \rightarrow \text{SiO}_2(S) + 2\text{H}_2(G)
 \]

- We can work out the thickness of Si consumed from the number density.

\[
X_{Si} = X_0 \frac{n_{ox}}{n_{Si}} \\
X_{Si} = X_0 \frac{2.3 \times 10^{22}}{5 \times 10^{22}} = 0.46X_0
\]

Oxide Growth Model
Deal & Grove Model

- Without easy growth of SiO$_2$ on Si, there would be no semiconductor industry.
- It’s no accident that the world leader in Si chip technology, Intel, has been led by Andy Grove.
- As a young researcher at Fairchild Semiconductor, he “wrote the book” on SiO$_2$ growth: the Deal-Grove model.

1997

Deal & Grove Model

- We will talk about dry growth (O$_2$), but principles are the same for H$_2$O.
- SiO$_2$ growth occurs at the Si/SiO$_2$ interface because:

\[
D^O_2(SiO_2) ≫ D^Si(SiO_2)
\]

I.e. diffusion coefficient of O$_2$ in SiO$_2$ is much higher than the diffusion coefficient of Si in SiO$_2$.

- We want to quantify the growth rate of the oxide.
- For this class we will carry out only parts of the derivation, and use the results. It closely follows the textbook.
 - A more in-depth derivation can be found in ECE611.
Modelling Oxidation

• The oxidation process is best visualized by this picture:

![Diagram of oxidation process](image)

• In order for oxidation to occur, oxygen must reach the silicon interface.
• As the oxide grows, the oxygen must pass through more SiO$_2$, and the growth rate will slow.
• The figure on the right is one way to visualize the process.

Oxidation Diagram

• The labels are as follows:
 • N is the concentration of O$_2$ (# / volume).
 • x is the distance from the surface of the oxide.
 • X_0 is the distance of the interface between the Si and SiO$_2$ from the surface (will change with time).
 • N_i is the concentration of O$_2$ at the interface between the Si and SiO$_2$.
 • J is the oxygen flux (# / area / time).
• We will assume the flux is the same at every position up to X_0.
Modelling Oxidation

- We can describe the flux (J) using Fick’s First Law:
 \[
 J = -D \frac{\partial N(x,t)}{\partial x}
 \]
 \[\text{(3.3)}\]

- Where D is the diffusion coefficient of O_2 in SiO_2.
- The negative sign means that particles tend to move from regions of high concentration to regions of low concentration.
- For our derivation we are going to make the approximation that oxygen flux is constant everywhere and that $N \propto x$.
- In this case we can just approximate Fick’s First Law as:
 \[
 J = -D \frac{N_i - N_0}{X_0 - 0} = -D \frac{N_i - N_0}{X_0} \]
 \[\text{(3.4)}\]

Oxidation Reaction

- We quantify the conversion of silicon and oxygen into $+ O_2$ to SiO_2 via a chemical reaction rate: k_s. This has units of length / time, (e.g. cm/s).
- At the interface between the SiO_2 and Si we assume the oxidation rate (k_s) is proportional to the concentration of O_2 at the interface (N_i):
 \[
 J = k_s N_i
 \]
 \[\text{(3.5)}\]
- Equating N_i’s in these two equations:
 \[
 J = \frac{DN_0}{(X_0 + D/k_s)}
 \]
 \[\text{(3.6)}\]
Oxide Growth Rate

• So, by balancing diffusion with reaction rate we can describe the O_2 flux as:

$$J = \frac{DN_0}{(X_0 + D/k_s)}$$ \hspace{1cm} (3.6)

• Recall, our goal is to determine the rate of oxide growth:

$$\frac{dX_0}{dt}$$

• We define the number of oxygen molecules incorporated into a unit volume of the resulting oxide as M.
 • M is a number density and has dimensions of #/[length]3.
 • We can hence infer through dimensional analysis:

$$\frac{dX_0}{dt} = J/M = \frac{DN_0}{M(X_0 + D/k_s)}$$ \hspace{1cm} (3.7)

• We identify this a first order ordinary differential equation.
 • We are not going to solve it, we will just take the solution:

$$X_0(t) = 0.5A \left[1 + \frac{4B}{A^2} (t + \tau) \right]^{1/2} - 1$$ \hspace{1cm} (3.9)

• Where:
 $$A = \frac{2D}{k_s} \quad B = \frac{2DN_0}{M}$$
 • Bare silicon is very reactive, and in air you will always find your wafer has some native oxide (even if it is only ~10Å).
 • And τ is the time it would have taken to grow the initial oxide.

• You can think of τ as the time before $t = 0$ required to grow this native oxide.
Oxide Thickness

\[X_0(t) = 0.5A \left[1 + \frac{4B}{A^2} (t + \tau) \right]^{1/2} - 1 \]

(3.9)

- This is the equation that tells us how thick our oxide would be for a certain oxidation time \(t \) and certain parameters \((A, B, \tau) \).
- Growth parameters are often quoted with this notation:
 - Be aware of the non-standard units for length and time.

Growth Regimes

\[X_0(t) = 0.5A \left[1 + \frac{4B}{A^2} (t + \tau) \right]^{1/2} - 1 \]

(3.9)

- It turns out we can simplify this equation for different times.
- We define **Short Times** as \(t + \tau \ll A^2/4B \):

 \[X_0(t) = \frac{B}{A} (t + \tau) \]

(3.10)

- We define **Long Times** as \(t + \tau \gg A^2/4B, t \gg \tau \):

 \[X_0(t) = \sqrt{Bt} \]

(3.11)

- For this reason, sometimes \(A/B \) is the called the **Linear Coefficient** and \(B \) is called the **Parabolic Coefficient**.
Growth Regimes

- If we plotted the oxide thickness (X_0) as a function of growth time, we would hence expect to observe something like this:

Factors Influencing Oxidation Rate
Diffusion Coefficient

- As we talked about in the last lecture, diffusion is a temperature-activated process:
 \[D = D_0 \exp \left(\frac{-E_A}{k_B T} \right) \]
 (3.12)

- Where:
 - \(D \) is the diffusion coefficient (of oxygen in SiO\(_2\)).
 - \(D_0 \) is the diffusion pre-factor.
 - \(E_A \) is the activation energy.
 - \(k_B \) is the Boltzmann Constant.
 - \(T \) is the Temperature.

Diffusion Coefficient

<table>
<thead>
<tr>
<th>Wet O(_2)(X(_i) = 0 nm)</th>
<th>Dry O(_2)(X(_i) = 25 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_0)</td>
<td>(E_A)</td>
</tr>
<tr>
<td>Linear (B/A)</td>
<td>9.70 \times 10^3 \mu m/hr</td>
</tr>
<tr>
<td>Parabolic (B)</td>
<td>388 \mu m(^2)/hr</td>
</tr>
<tr>
<td>Linear (B/A)</td>
<td>1.63 \times 10^3 \mu m/hr</td>
</tr>
<tr>
<td>Parabolic (B)</td>
<td>388 \mu m(^2)/hr</td>
</tr>
</tbody>
</table>

- \(\)<100\> Silicon
- \(\)<111\> Silicon

- Dry oxide:
 - 700-1,200 °C.
 - 1 atm (101325 Pa).
 - Typical = 100nm/hr.
 - SiO\(_2\) Density is higher.
 - Used for gate oxide.

- Wet oxide:
 - 750-1,100 °C.
 - 25 atm (2.5 \times 10^6 Pa).
 - Typical = 1\mu m/hr.
 - SiO\(_2\) Density is lower, more porous.
 - Used for field oxide and etch oxide.
Growth Rate Constants

\[A = \frac{2D}{k_S} \]

\[B = \frac{2DN_0}{M} \]

- The rate constants / coefficients are also \(T \)-dependent.

Figure 3.4
Dependence of the parabolic rate constant \(B \) on temperature for the thermal oxidation of silicon in pyrogenic \(\text{H}_2\text{O} \) (640 torr) or dry \(\text{O}_2 \). Reprinted by permission of the publisher, The Electrochemical Society, Inc., from Ref. [10].

Figure 3.5
Dependence of the linear rate constant \(B/A \) on temperature for the thermal oxidation of silicon in pyrogenic \(\text{H}_2\text{O} \) (640 torr) or dry \(\text{O}_2 \). Reprinted by permission of the publisher, The Electrochemical Society, Inc., from Ref. [10].
First Substrates are Cleaned

- RCA Clean (Lecture 2)
 - Organic strip.
 - Piranha Solution.
 - Native oxide removal.
 - HF.
 - Heavy metal removal.
 - HCl:H₂O₂:H₂O.
 - Dump rinse.
 - 18 MΩcm DI H₂O.
 - Spin Dry.

Initial Oxidation Regime

- Experimentally, this is observed:

![Graph showing oxidation rate vs. oxide thickness]
Initial Oxidation Regime

- Many models have been proposed.
- It is likely the O_2-SiO_2 interface is not abrupt:

![Initial Oxidation Regime Diagram]

Dopants

- Common dopants in Si enhance oxidation at higher concentration

Boron

Oxide thickness vs. wet oxidation time at 640 mTorr for three different boron concentrations (Sze)

Phosphorus

Data for dry oxidation at 1 atm and 900°C

Linear, B/A, and parabolic, B, rate constants vs. phosphorus concentration.
Oxidation Reactor

- Oxidation is carried out in a horizontal or vertical reactor.
- Many wafers are held in a vertical holder and pure water is pumped through.

![Oxidation Reactor Diagram](image)

- Pressure = 760 Torr (typical)
 - High concentration to help diffusion.
- Temperature = 900 ± 1 °C (typical)
 - High temperature to help diffusion.

Equipment

- You will become familiar with this equipment during lab sessions.
Summary

- We will have covered the growth of silicon oxide.

Next Time...

- Next time will start to cover transistors.