# Linear Algebra \& Geometry why is linear algebra useful in computer vision? 

References:
-Any book on linear algebra!
-[HZ] - chapters 2, 4

## Vectors (i.e., 2D vectors)

$$
\mathbf{v}=\left(x_{1}, x_{2}\right)
$$



Magnitude: $\quad\|\mathbf{v}\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}$

$$
\|\mathbf{v}\|=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

If $\|\mathbf{v}\|=1, \quad \mathbf{v}$ Is a UNIT vector

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{x_{1}}{\|\mathbf{v}\|}, \frac{x_{2}}{\|\mathbf{v}\|}\right) \text { Is a unit vector }
$$

Orientation: $\quad \theta=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right)$

## Vector Addition

$$
\mathbf{v}+\mathbf{w}=\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$



## Vector Subtraction

$$
\mathbf{v}-\mathbf{w}=\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)=\left(x_{1}-y_{1}, x_{2}-y_{2}\right)
$$



## Scalar Product

$$
a \mathbf{v}=a\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)
$$



## Inner (dot) Product



The inner product is a SCALAR!
$\mathrm{v} \cdot \mathrm{w}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)=\|\mathrm{v}\| \cdot\|\mathrm{w}\| \cos \alpha$
if

$$
\mathrm{v} \perp \mathrm{w}, \quad \mathrm{v} \cdot \mathrm{w}=?=0
$$

## Orthonormal Basis

$$
\begin{aligned}
& \times 2 \ldots{ }^{\mathrm{v}} \quad \mathrm{P} \quad \mathbf{i}=(1,0) \quad\|\mathbf{i}\|=1 \quad \mathbf{i} \cdot \mathbf{j}=0 \\
& \mathbf{v}=\left(x_{1}, x_{2}\right) \quad \mathbf{v}=\mathrm{x}_{1} \mathbf{i}+\mathrm{x}_{2} \mathbf{j} \\
& \mathbf{v} \cdot \mathbf{i}=?=\left(\mathrm{x}_{1} \mathbf{i}+\mathrm{x}_{2} \mathbf{j}\right) \cdot \mathbf{i}=\mathrm{x}_{1} 1+\mathrm{x}_{2} 0=\mathrm{x}_{1} \\
& \mathbf{v} \cdot \mathbf{j}=\left(\mathrm{x}_{1} \mathbf{i}+\mathrm{x}_{2} \mathbf{j}\right) \cdot \mathbf{j}=\mathrm{x}_{1} \cdot 0+\mathrm{x}_{2} \cdot 1=\mathrm{x}_{2}
\end{aligned}
$$

## Matrices

Sum: $\quad C_{n \times m}=A_{n \times m}+B_{n \times m} \quad c_{i j}=a_{i j}+b_{i j}$
$A$ and $B$ must have the same dimensions!
Example: $\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]+\left[\begin{array}{ll}6 & 2 \\ 1 & 5\end{array}\right]=\left[\begin{array}{ll}8 & 7 \\ 4 & 6\end{array}\right]$

## Matrices



$$
C_{n \times p}=A_{n \times \sqrt{m}} B_{\underline{m} \times p}
$$

$$
\mathrm{c}_{\mathrm{ij}}=\mathbf{a}_{\mathrm{i}} \cdot \mathbf{b}_{\mathrm{j}}=\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{a}_{\mathrm{ik}} \mathrm{~b}_{\mathrm{kj}}
$$

$A$ and $B$ must have compatible dimensions!
$A_{n \times n} B_{n \times n} \neq B_{n \times n} A_{n \times n}$

## Matrix Inverse

Does not exist for all matrices, necessary (but not sufficient) that the matrix is square

$$
\begin{gathered}
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \\
\mathbf{A}^{-1}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right], \operatorname{det} \mathbf{A} \neq 0
\end{gathered}
$$

If $\operatorname{det} \mathbf{A}=0, \mathbf{A}$ does not have an inverse.

## Matrix Determinant

Useful value computed from the elements of a square matrix $\mathbf{A}$

$$
\begin{gathered}
\operatorname{det}\left[a_{11}\right]=a_{11} \\
\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{12} a_{21} \\
\operatorname{det}\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\begin{array}{l}
11 a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
\\
-a_{13} a_{22} a_{31}-a_{23} a_{32} a_{11}-a_{33} a_{12} a_{21}
\end{array}
\end{gathered}
$$

## Matrix Transpose

Definition:

$$
\begin{aligned}
\mathbf{C}_{m \times n} & =\mathbf{A}_{n \times m}^{T} \\
c_{i j} & =a_{j i}
\end{aligned}
$$

Identities:

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B})^{T} & =\mathbf{A}^{T}+\mathbf{B}^{T} \\
(\mathbf{A B})^{T} & =\mathbf{B}^{T} \mathbf{A}^{T}
\end{aligned}
$$

If $\mathbf{A}=\mathbf{A}^{T}$, then $\mathbf{A}$ is symmetric

## 2D Geometrical Transformations

## 2D Translation



## 2D Translation Equation



$$
\begin{aligned}
& \mathbf{P}=(x, y) \\
& \mathbf{t}=\left(t_{x}, t_{y}\right)
\end{aligned}
$$

$$
\mathbf{P}^{\prime}=\mathbf{P}+\mathbf{t}=\left(\mathrm{x}+\mathrm{t}_{\mathrm{x}}, \mathrm{y}+\mathrm{t}_{\mathrm{y}}\right)
$$

## 2D Translation using Matrices

$$
\begin{aligned}
& \mathbf{P}=(x, y) \\
& \mathbf{t}=\left(t_{x}, t_{y}\right) \\
& \mathbf{P}^{\prime} \rightarrow\left[\begin{array}{l}
x+t_{x} \\
y+t_{y}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$



## Scaling Equation



$$
\mathbf{P}=(\mathrm{x}, \mathrm{y}) \rightarrow \mathbf{P}^{\prime}=\left(\mathrm{s}_{\mathrm{x}} \mathrm{x}, \mathrm{~s}_{\mathrm{y}} \mathrm{y}\right)
$$

$$
\mathbf{P}=(x, y) \rightarrow(x, y, 1)
$$

$$
\mathbf{P}^{\prime}=\left(s_{x} x, s_{y} y\right) \rightarrow\left(s_{x} x, s_{y} y, 1\right)
$$

$$
\mathbf{P}^{\prime} \rightarrow\left[\begin{array}{c}
s_{x} x \\
s_{y} y \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}_{\mathbf{S}}=\left[\begin{array}{cc}
\mathbf{S}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \cdot \mathbf{P}=\mathbf{S} \cdot \mathbf{P}
$$

## Scaling \& Translating



$$
\mathrm{P}^{\prime \prime}=\mathrm{T} \cdot \mathrm{P}^{\prime}=\mathrm{T} \cdot(\mathrm{~S} \cdot \mathrm{P})=(\mathrm{T} \cdot \mathrm{~S}) \cdot \mathrm{P}=\mathrm{A} \cdot \mathrm{P}
$$

## Scaling \& Translating

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime}=\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\underbrace{\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{S} & \mathrm{t} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{s}_{\mathrm{x}} \mathrm{x}+\mathrm{t}_{\mathrm{x}} \\
\mathrm{~s}_{\mathrm{y}} \mathrm{y}+\mathrm{t}_{\mathrm{y}} \\
1
\end{array}\right]}_{\mathrm{A}}
\end{aligned}
$$



## Rotation Equations

Counter-clockwise rotation by an angle $\theta$


$$
\begin{gathered}
\mathrm{x}^{\prime}=\cos \theta \mathrm{x}-\sin \theta \mathrm{y} \\
\mathrm{y}^{\prime}=\cos \theta \mathrm{y}+\sin \theta \mathrm{x} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{P}^{\prime}=\mathbf{R} \mathbf{P}
\end{gathered}
$$

## Rotation+ Scaling +Translation $P^{\prime}=(T R S) P$

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathbf{T} \cdot \mathrm{R} \cdot \mathbf{S} \cdot \mathbf{P}=\left[\begin{array}{ccc}
1 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & \mathrm{t}_{\mathrm{x}} \\
\sin \theta & \cos \theta & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & 0 \\
0 & \mathrm{~s}_{\mathrm{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]= \\
& =\left[\begin{array}{cc}
R^{\prime} & \mathrm{t} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{S} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{R}^{\prime} \mathrm{S} & \mathrm{t} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
1
\end{array}\right] \\
& \text { If } s_{x}=s_{y} \text {, this is a } \\
& \text { similarity } \\
& \text { transformation! }
\end{aligned}
$$

## Eigenvalues and Eigenvectors

A eigenvalue $\lambda$ and eigenvector $\mathbf{u}$ satisfies

$$
\mathbf{A} \mathbf{u}=\lambda \mathbf{u}
$$

where $\mathbf{A}$ is a square matrix.

- Multiplying u by A scales u by $\lambda$

Please see geometric demos at:
http://www.sineofthetimes.org/eigenvectors-of-2-x-2-matrices-a-geometric-exploration/
See also geometry of covariance matrix:
http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

## Eigenvalues and Eigenvectors

Rearranging the previous equation gives the system

$$
\mathbf{A} \mathbf{u}-\lambda \mathbf{u}=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{u}=0
$$

which has a solution if and only if $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.

- The eigenvalues are the roots of this determinant which is polynomial in $\lambda$.
- Substitute the resulting eigenvalues back into $\mathbf{A u}=\lambda \mathbf{u}$ and solve to obtain the corresponding eigenvector.

