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Since the run-time does not depend directly on the size of the training set, the resulting
algorithm is especially suited for learning from large datasets. Our approach also extends to
non-linear kernels while working solely on the primal objective function, though in this case
the runtime does depend linearly on the training set size. Our algorithm is particularly well
suited for large text classification problems, where we demonstrate an order-of-magnitude
speedup over previous SVM learning methods.
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1 Introduction

Support Vector Machines (SVMs) are effective and popular classification learning tool [36,
12]. The task of learning a support vector machine is typically cast as a constrained quadratic
programming problem. However, in its native form, it is in fact an unconstrained empirical
loss minimization with a penalty term for the norm of the classifier that is being learned.
Formally, given a training set S = {(xi, yi)}mi=1, where xi ∈ n and yi ∈ {+1,−1}, we
would like to find the minimizer of the problem

min
w

λ

2
∥w∥2 + 1

m

∑

(x,y)∈S

ℓ(w; (x, y)) , (1)

where
ℓ(w; (x, y)) = max{0, 1− y ⟨w,x⟩} , (2)

and ⟨u,v⟩ denotes the standard inner product between the vectors u and v. We denote
the objective function of Eq. (1) by f(w). We say that an optimization method finds an ϵ-
accurate solution ŵ if f(ŵ) ≤ minw f(w) + ϵ. The standard SVM problem also includes
an unregularized bias term. We omit the bias throughout the coming sections and revisit the
incorporation of a bias term in Sec. 6.

We describe and analyze in this paper a simple stochastic sub-gradient descent algo-
rithm, which we call Pegasos, for solving Eq. (1). At each iteration, a single training ex-
ample is chosen at random and used to estimate a sub-gradient of the objective, and a step
with pre-determined step-size is taken in the opposite direction. We show that with high
probability over the choice of the random examples, our algorithm finds an ϵ-accurate so-
lution using only Õ(1/(λϵ)) iterations, while each iteration involves a single inner product
between w and x. Put differently, the overall runtime required to obtain an ϵ accurate solu-
tion is Õ(n/(λϵ)), where n is the dimensionality of w and x. Moreover, this runtime can
be reduced to Õ(d/(λϵ)) where d is the number of non-zero features in each example x.
Pegasos can also be used with non-linear kernels, as we describe in Sec. 4. We would like
to emphasize that a solution is found in probability solely due to the randomization steps
employed by the algorithm and not due to the data set. The data set is not assumed to be ran-
dom, and the analysis holds for any data set S. Furthermore, the runtime does not depend
on the number of training examples and thus our algorithm is especially suited for large
datasets.

Before indulging into the detailed description and analysis of Pegasos, we would like
to draw connections to and put our work in context of some of the more recent work on
SVM. For a more comprehensive and up-to-date overview of relevant work see the ref-
erences in the papers cited below as well as the web site dedicated to kernel methods at
http://www.kernel-machines.org . Due to the centrality of the SVM optimization problem,
quite a few methods were devised and analyzed. The different approaches can be roughly
divided into the following categories.
Interior Point (IP) methods: IP methods (see for instance [7] and the references therein)
cast the SVM learning task as a quadratic optimization problem subject to linear constraints.
The constraints are replaced with a barrier function. The result is a sequence of uncon-
strained problems which can be optimized very efficiently using Newton or Quasi-Newton
methods. The advantage of IP methods is that the dependence on the accuracy ϵ is double
logarithmic, namely, log(log(1/ϵ)). Alas, IP methods typically require run time which is
cubic in the number of examplesm. Moreover, the memory requirements of IP methods are
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O(m2) which renders a direct use of IP methods very difficult when the training set con-
sists of many examples. It should be noted that there have been several attempts to reduce
the complexity based on additional assumptions (see e.g. [15]). However, the dependence on
m remains super linear. In addition, while the focus of the paper is the optimization problem
cast by SVM, one needs to bear in mind that the optimization problem is a proxy method
for obtaining good classification error on unseen examples. Achieving a very high accuracy
in the optimization process is usually unnecessary and does not translate to a significant
increase in the generalization accuracy. The time spent by IP methods for finding a sin-
gle accurate solution may, for instance, be better utilized for trying different regularization
values.
Decomposition methods: To overcome the quadratic memory requirement of IP methods,
decomposition methods such as SMO [29] and SVM-Light [20] tackle the dual representa-
tion of the SVM optimization problem, and employ an active set of constraints thus working
on a subset of dual variables. In the extreme case, called row-action methods [8], the active
set consists of a single constraint. While algorithms in this family are fairly simple to im-
plement and entertain general asymptotic convergence properties [8], the time complexity
of most of the algorithms in this family is typically super linear in the training set size m.
Moreover, since decomposition methods find a feasible dual solution and their goal is to
maximize the dual objective function, they often result in a rather slow convergence rate to
the optimum of the primal objective function. (See also the discussion in [19].)
Primal optimization: Most existing approaches, including the methods discussed above,
focus on the dual of Eq. (1), especially when used in conjunction with non-linear kernels.
However, even when non-linear kernels are used, the Representer theorem [23] allows us
to re-parametrize w as w =

∑

αiyixi and cast the primal objective Eq. (1) as an un-
constrained optimization problem with the variables α1, . . . ,αm (see Sec. 4). Tackling the
primal objective directly was studied, for example, by Chapelle [10], who considered us-
ing smooth loss functions instead of the hinge loss, in which case the optimization problem
becomes a smooth unconstrained optimization problem. Chapelle then suggested using var-
ious optimization approaches such as conjugate gradient descent and Newton’s method. We
take a similar approach here, however we cope with the non-differentiability of the hinge-
loss directly by using sub-gradients instead of gradients. Another important distinction is
that Chapelle views the optimization problem as a function of the variables αi. In contrast,
though Pegasos maintains the same set of variables, the optimization process is performed
with respect tow, see Sec. 4 for details.
Stochastic gradient descent: The Pegasos algorithm is an application of a stochastic sub-
gradient method (see for example [25,34]). In the context of machine learning problems,
the efficiency of the stochastic gradient approach has been studied in [26,1,3,27,6,5]. In
particular, it has been claimed and experimentally observed that, “Stochastic algorithms
yield the best generalization performance despite being the worst optimization algorithms”.
This claim has recently received formal treatment in [4,32].

Two concrete algorithms that are closely related to the Pegasos algorithm and are also
variants of stochastic sub-gradient methods are the NORMA algorithm [24] and a stochas-
tic gradient algorithm due to Zhang [37]. The main difference between Pegasos and these
variants is in the procedure for setting the step size. We elaborate on this issue in Sec. 7.
The convergence rate given in [24] implies that the number of iterations required to achieve
ϵ-accurate solution isO(1/(λϵ)2). This bound is inferior to the corresponding bound of Pe-
gasos. The analysis in [37] for the case of regularized loss shows that the squared Euclidean
distance to the optimal solution converges to zero but the rate of convergence depends on
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the step size parameter. As we show in Sec. 7, tuning this parameter is crucial to the success
of the method. In contrast, Pegasos is virtually parameter free. Another related recent work
is Nesterov’s general primal-dual subgradient method for the minimization of non-smooth
functions [28]. Intuitively, the ideas presented in [28] can be combined with the stochastic
regime of Pegasos. We leave this direction and other potential extensions of Pegasos for
future research.
Online methods: Online learning methods are very closely related to stochastic gradient
methods, as they operate on only a single example at each iteration. Moreover, many online
learning rules, including the Perceptron rule, can be seen as implementing a stochastic gradi-
ent step. Many such methods, including the Perceptron and the Passive Aggressive method
[11] also have strong connections to the “margin” or norm of the predictor, though they
do not directly minimize the SVM objective. Nevertheless, online learning algorithms were
proposed as fast alternatives to SVMs (e.g. [16]). Such algorithms can be used to obtain
a predictor with low generalization error using an online-to-batch conversion scheme [9].
However, the conversion schemes do not necessarily yield an ϵ-accurate solutions to the
original SVM problem and their performance is typically inferior to direct batch optimizers.
As noted above, Pegasos shares the simplicity and speed of online learning algorithms, yet
it is guaranteed to converge to the optimal SVM solution.
Cutting Planes Approach: Recently, Joachims [21] proposed SVM-Perf, which uses a cut-
ting planes method to find a solution with accuracy ϵ in time O(md/(λϵ2)). This bound
was later improved by Smola et al [33] to O(md/(λϵ)). The complexity guarantee for Pe-
gasos avoids the dependence on the data set sizem. In addition, while SVM-Perf yields very
significant improvements over decomposition methods for large data sets, our experiments
(see Sec. 7) indicate that Pegasos is substantially faster than SVM-Perf.

2 The Pegasos Algorithm

As mentioned above, Pegasos performs stochastic gradient descent on the primal objective
Eq. (1) with a carefully chosen stepsize. We describe in this section the core of the Pegasos
procedure in detail and provide pseudo-code. We also present a few variants of the basic
algorithm and discuss few implementation issues.

2.1 The Basic Pegasos Algorithms

On each iteration Pegasos operates as follow. Initially, we set w1 to the zero vector. On
iteration t of the algorithm, we first choose a random training example (xit , yit) by picking
an index it ∈ {1, . . . ,m} uniformly at random. We then replace the objective in Eq. (1)
with an approximation based on the training example (xit , yit), yielding:

f(w; it) =
λ

2
∥w∥2 + ℓ(w; (xit , yit)) . (3)

We consider the sub-gradient of the above approximate objective, given by:

∇t = λwt − [yit ⟨wt,xit⟩ < 1] yitxit , (4)

where [y ⟨w,x⟩ < 1] is the indicator function which takes a value of one if its argument
is true (w yields non-zero loss on the example (x, y)), and zero otherwise. We then update
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INPUT: S, λ, T
INITIALIZE: Setw1 = 0
FOR t = 1, 2, . . . , T

Choose it ∈ {1, . . . , |S|} uniformly at random.
Set ηt = 1

λt
If yit ⟨wt,xit ⟩ < 1, then:
Setwt+1 ← (1− ηtλ)wt + ηtyitxit

Else (if yit ⟨wt,xit ⟩ ≥ 1):
Setwt+1 ← (1− ηtλ)wt

[ Optional: wt+1 ← min
{

1, 1/
√

λ
∥wt+1∥

}

wt+1 ]
OUTPUT:wT+1

Fig. 1 The Pegasos Algorithm.

wt+1 ← wt − ηt∇t using a step size of ηt = 1/(λt). Note that this update can be written
as:

wt+1 ← (1− 1

t
)wt + ηt [yit ⟨wt,xit⟩ < 1] yitxit . (5)

After a predetermined number T of iterations, we output the last iteratewT+1. The pseudo-
code of Pegasos is given in Fig. 1.

2.2 Incorporating a Projection Step

The above description of Pegasos is a verbatim application of the stochastic gradient-descent
method. A potential variation is the gradient-projection approach where we limit the set of
admissible solutions to the ball of radius 1/

√
λ. To enforce this property, we project wt

after each iteration onto this sphere by performing the update:

wt+1 ← min
{

1, 1/
√
λ

∥wt+1∥

}

wt+1 . (6)

Our initial presentation and implementation of Pegasos [31] included a projection step,
while here we include it as an optional step. However, the newly revised analysis presented
in this paper does not require such a projection and establishes almost the same guarantees
for the basic (without projection) Pegasos algorithm. We did not notice major differences
between the projected and unprojected variants in our experiments (see Sec. 7).

2.3 Mini-Batch Iterations

In our analysis, we actually consider a more general algorithm that utilizes k examples at
each iteration, where 1 ≤ k ≤ m is a parameter that needs to be provided to the algorithm.
That is, at each iteration, we choose a subsetAt ⊂ [m] = {1, . . . ,m}, |At| = k, of k exam-
ples uniformly at random among all such subsets. When k = m each iteration handles the
original objective function. This case is often referred to as batch or deterministic iterations.
To underscore the difference between the fully deterministic case and the stochastic case,
we refer to the subsamples in the latter case as mini-batches and call the process mini-batch
iterates. We thus consider the approximate objective function:

f(w;At) =
λ
2
∥w∥2 + 1

k

∑

i∈At

ℓ(w; (xi, yi)) . (7)
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INPUT: S, λ, T , k
INITIALIZE: Setw1 = 0
FOR t = 1, 2, . . . , T

Choose At ⊆ [m], where |At| = k, uniformly at random
Set A+

t = {i ∈ At : yi ⟨wt,xi⟩ < 1}
Set ηt = 1

λt
Setwt+1 ← (1− ηt λ)wt +

ηt
k

∑

i∈A+
t

yi xi

[Optional: wt+1 ← min
{

1, 1/
√

λ
∥wt+1∥

}

wt+1 ]
OUTPUT:wT+1

Fig. 2 The Mini-Batch Pegasos Algorithm.

Note that we overloaded our original definition of f and that the original objective can be
denoted as f(w) = f(w; [m]). As before, we consider the sub-gradient of the approximate
objective given by:

∇t = λwt −
1

k

∑

i∈At

[yi ⟨wt,xi⟩ < 1] yixi. (8)

We update wt+1 ← wt − ηt∇t using the same predetermined step size ηt = 1/(λt).
Pseudo-code of this more general algorithm is given in Fig. 2. As before, we include an
optional projection step.

When k = m we choose At = S on each round t and we obtain the deterministic sub-
gradient descent method. In the other extreme case, when k = 1, we recover the stochastic
sub-gradient algorithm of Figure 1.

In the above description we refer toAt as chosen uniformly at random among the subsets
of [m] of size k, i.e. chosen without repetitions. Our analysis still holds when At is a multi-
set chosen i.i.d. with repetitions.

2.4 Sparse Feature Vectors

We conclude this section with a short discussion of implementation details when the in-
stances are sparse, namely, when each instance has very few non-zero elements. In this case,
we can represent w as a pair (v, a) where v ∈ n is a vector and a is a scalar. The vector
w is defined as w = av. We do not require the vector v to be normalized and hence we
over-represent w. However, using this representation, it is easily verified that the total num-
ber of operations required for performing one iteration of the basic Pegasos algorithm (with
k = 1) is O(d), where d is the number of non-zero elements in x.

When projection steps are included, we representw as a triplet (v, a, ν)with the follow-
ing variables ν = ∥w∥ = a ∥v∥. Storing the norm ofw allows us to perform the projection
step using a constant number of operations involving only a and ν. After w is updated, the
stored norm ν needs to be updated, which can again be done in time O(d) as before.

3 Analysis

In this section we analyze the convergence properties of Pegasos. Although our main interest
is in the special case where k = 1 given in Figure 1, we actually analyze here the more
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general mini-batch variant of Figure 2. Throughout this section we denote

w
⋆ = argmin

w

f(w) . (9)

Recall that on each iteration of the algorithm, we focus on an instantaneous objective func-
tion f(w;At). We start by bounding the average instantaneous objective of the algorithm
relatively to the average instantaneous objective of the optimal solution. We first need the
following lemma which is based on a result from [17], though we provide the proof here for
completeness. The lemma relies on the notion of strongly convex functions (see for example
[30]). A function f is called λ-strongly convex if f(w)− λ

2 ∥w∥
2 is a convex function.

Lemma 1 Let f1, . . . , fT be a sequence of λ-strongly convex functions. Let B be a closed
convex set and define ΠB(w) = argminw′∈B ∥w − w

′∥. Let w1, . . . ,wT+1 be a se-
quence of vectors such that w1 ∈ B and for t ≥ 1, wt+1 = ΠB(wt − ηt∇t), where
∇t belongs to the sub-gradient set of ft at wt and ηt = 1/(λt). Assume that for all t,
∥∇t∥ ≤ G. Then, for all u ∈ B we have

1
T

T
∑

t=1

ft(wt) ≤
1
T

T
∑

t=1

ft(u) +
G2(1 + ln(T ))

2 λT
.

Proof Since ft is strongly convex and∇t is in the sub-gradient set of ft atwt we have that
(see [30])

⟨wt − u,∇t⟩ ≥ ft(wt)− ft(u) + λ
2 ∥wt − u∥2 . (10)

Next, we show that

⟨wt − u,∇t⟩ ≤
∥wt − u∥2 − ∥wt+1 − u∥2

2 ηt
+ ηt

2 G2 . (11)

Letw′
t denotewt − ηt∇t. Sincewt+1 is the projection ofw′

t onto B, and u ∈ B we have
that ∥w′

t − u∥2 ≥ ∥wt+1 − u∥2. Therefore,

∥wt − u∥2 − ∥wt+1 − u∥2 ≥ ∥wt − u∥2 − ∥w′
t − u∥2

= 2ηt ⟨wt − u,∇t⟩ − η2t ∥∇t∥2 .

Rearranging the above and using the assumption ∥∇t∥ ≤ G yields Eq. (11). Comparing
Eq. (10) and Eq. (11) and summing over t we obtain

T
∑

t=1

(ft(wt)− ft(u)) ≤

T
∑

t=1

(

∥wt − u∥2 − ∥wt+1 − u∥2

2 ηt
+ λ

2 ∥wt − u∥2
)

+
G2

2

T
∑

t=1

ηt .

Next, we use the definition ηt = 1/(λ t) and note that the first sum on the right-hand side
of the above equation collapses to −λ (T + 1) ∥wT+1 − u∥2. Thus,

T
∑

t=1

(ft(wt)− ft(u)) ≤ −λ (T + 1) ∥wT+1 − u∥2 + G2

2λ

T
∑

t=1

1

t

≤ G2

2λ
(1 + ln(T )) .

⊓-
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Based on the above lemma, we are now ready to bound the average instantaneous ob-
jective of Pegasos.

Theorem 1 Assume that for all (x, y) ∈ S the norm of x is at mostR. Letw⋆ be as defined
in Eq. (9) and let c = (

√
λ + R)2 whenever we perform the projection step and c = 4R2

whenever we do not perform the projection step. Then, for T ≥ 3,

1

T

T
∑

t=1

f(wt;At) ≤
1

T

T
∑

t=1

f(w⋆;At) +
c(1 + ln(T ))

2λT
.

Proof To simplify our notation we use the shorthand ft(w) = f(w;At). The update of the
algorithm can be rewritten as wt+1 = ΠB(wt − ηt∇t), where ∇t is defined in Eq. (8)
and B is the Euclidean ball of radius 1/

√
λ if we perform a projection step and otherwise

B = n. Thus, to prove the theorem it suffices to show that the conditions stated in Lemma 1
hold. Since ft is a sum of a λ-strongly convex function (λ2 ∥w∥

2) and a convex function (the
average hinge-loss over At), it is clearly λ-strongly convex. Next, we derive a bound on
∥∇t∥. If we perform a projection step then using the fact that ∥wt∥ ≤ 1/

√
λ and that

∥x∥ ≤ R combined with the triangle inequality we obtain ∥∇t∥ ≤
√
λ + R. If we do not

perform a projection step then we can first rewrite the update step as

wt+1 =
(

1− 1
t

)

wt − 1
tλvt , (12)

where vt = 1
|At|

∑

i∈At
[yi ⟨wt,xt⟩ < 1] yixi. Therefore, the initial weight of each vi

is 1
λ i and then on rounds j = i+ 1, . . . , t it will be multiplied by 1− 1

j = j−1
j . Thus, the

overall weight of vi inwt+1 is

1
λ i

t
∏

j=i+1

j−1
j = 1

λ t ,

which implies that we can rewritewt+1 as

wt+1 =
1

λ t

t
∑

i=1

vi . (13)

From the above we immediately get that ∥wt+1∥ ≤ R/λ and therefore ∥∇t∥ ≤ 2R.
Finally, we need to prove that w⋆ ∈ B. If we do not perform projections then we have
w

⋆ ∈ n = B. Otherwise, we need to show that ∥w⋆∥ ≤ 1/
√
λ. To do so, we examine the

dual form of the SVM problem and use the strong duality theorem. In its more traditional
form, the SVM learning problem was described as the following constrained optimization
problem,

1
2
∥w∥2 + C

m
∑

i=1

ξi s.t. ∀i ∈ [m] : ξi ≥ 0, ξi ≥ 1− yi ⟨w,xi⟩ . (14)

Setting C = 1/(λm) this problem becomes equivalent to our formulation given in Eq. (1)
and Eq. (2). The dual problem of Eq. (14) is,

m
∑

i=1

αi −
1

2

∥

∥

∥

∥

∥

m
∑

i=1

αiyixi

∥

∥

∥

∥

∥

2

s.t. ∀i ∈ [m] : 0 ≤ αi ≤ C . (15)
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Let us denote the optimal primal and dual solutions by (w⋆, ξ⋆) and α⋆, respectively. The
primal solution can be written in terms of its dual counterpart as w⋆ =

∑m
i=1 α

⋆
i yixi. At

the optimum value α⋆, Eq. (15) can be rewritten as,

∥α⋆∥1 −
1
2
∥w⋆∥2 .

Moreover, from strong duality we know that the primal objective value is equal to the dual
objective value at the optimum, thus

1

2
∥w⋆∥2 + C ∥ξ⋆∥1 = ∥α⋆∥1 −

1

2
∥w⋆∥2 .

note that ∥α⋆∥∞ ≤ C = 1
λm . Therefore, ∥α

⋆∥1 ≤ 1/λ and we get that

1
2
∥w⋆∥2 ≤ 1

2
∥w⋆∥2 + C ∥ξ⋆∥1 = ∥α⋆∥1 −

1
2
∥w⋆∥2 ≤ 1

λ
− 1

2
∥w⋆∥2 .

Rearranging the terms yields ∥w⋆∥ ≤ 1/
√
λ. The bound in the theorem now follows from

Lemma 1. ⊓-

We now turn to obtaining a bound on the overall objective f(wt) evaluated at a single
predictor wt. The convexity of f implies that:

f

(

1

T

T
∑

t=1

wt

)

≤ 1

T

T
∑

t=1

f(wt) . (16)

Using the above inequality and Thm. 1, we immediately obtain Corollary 1 which provides
a convergence analysis for the deterministic case when k = m where f(w, At) = f(w).

Corollary 1 Assume that the conditions stated in Thm. 1 and that At = S for all t. Let
w̄ = 1

T

∑T
t=1 wt. Then,

f (w̄) ≤ f(w⋆) +
c(1 + ln(T ))

2λT
.

When At ⊂ S, Corollary 1 no longer holds. However, Kakade and Tewari [22] have
shown that a similar bound holds with high probability as long as At is sampled from S.

Lemma 2 (Corollary 7 in [22]) Assume that the conditions stated in Thm. 1 hold and
that for all t, each element in At is sampled uniformly at random from S (with or without
repetitions). Assume also thatR ≥ 1 and λ ≤ 1/4. Then, with a probability of at least 1−δ
we have

1
T

T
∑

t=1

f(wt)− f(w⋆) ≤ 21 c ln(T/δ)
λT

.

Combining the above with Eq. (16) we immediately obtain the following corrolary.

Corollary 2 Assume that the conditions stated in Lemma 2 hold and let w̄ = 1
T

∑T
t=1 wt.

Then, with probability of at least 1− δ we have

f(w̄) ≤ f(w⋆) +
21 c ln(T/δ)

λT
.
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The previous corollaries hold for the average hypothesis w̄. In practice, the final hypoth-
esis, wT+1, often provides better results. We next bridge this gap by providing a similar
convergence rate for a different mechanism of choosing the output vector. To do so, we first
show that at least half of the hypotheses are good.

Lemma 3 Assume that the conditions stated in Lemma 2 hold. Then, if t is selected at
random from [T ], we have with a probability of at least 1

2 that

f(wt) ≤ f(w⋆) +
42 c ln(T/δ)

λT
.

Proof Define a random variable Z = f(wt) − f(w⋆) where the randomness is over the
choice of the index t. From the definition of w⋆ as the minimizer of f(w) we clearly
have that Z is a non-negative random variable. Thus, from Markov inequality [Z ≥
2 [Z]] ≤ 1

2 . The claim now follows by combining the fact that [Z] = 1
T

∑T
t=1 f(wt)−

f(w⋆) with the bound given in Lemma 2. ⊓-

Based on the above lemma we conclude that if we terminate the procedure at a random
iteration, in at least half of the cases the last hypothesis is an accurate solution. Therefore,
we can simply try a random stopping time and evaluate the error of the last hypothesis1. The
above lemma tells us that on average after two attempts we are likely to find a good solution.

4 Using Mercer kernels

One of the main benefits of SVMs is that they can be used with kernels rather then with
direct access to the feature vectors x. The crux of this property stems from the Representer
Theorem [23], which implies that the optimal solution of Eq. (1) can be expressed as a
linear combination of the training instances. It is therefore possible to train and use a SVM
without direct access to the training instances, and instead only access their inner products
as specified through a kernel operator. That is, instead of considering predictors which are
linear functions of the training instances x themselves, we consider predictors which are
linear functions of some implicit mapping φ(x) of the instances. Training then involves
solving the minimization problem:

min
w

λ
2
∥w∥2 + 1

m

∑

(x,y)∈S

ℓ(w; (φ(x), y)) , (17)

where
ℓ(w; (φ(x), y)) = max{0, 1− y ⟨w,φ(x)⟩} . (18)

However, the mapping φ(·) is never specified explicitly but rather through a kernel operator
K(x,x′) =

〈

φ(x),φ(x′)
〉

yielding the inner products after the mapping φ(·).
One possible and rather common approach for solving the optimization problem 17 is

to switch to the dual problem, which can be written in terms of inner products of vectors
φ(·). Therefore, the dual problem can be solely expressed using kernel operators. However,
solving the dual problem is not necessary. Following [16,24,10], the approach we take here
is to directly minimize the primal problem while still using kernels.

1 To do so, we can simply calculate the objective on the entire data set or estimate it according to a sample
of size O(1/(λ ϵ)), where ϵ is the desired accuracy (see [35]).
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INPUT: S, λ, T

INITIALIZE: Set α1 = 0

FOR t = 1, 2, . . . , T

Choose it ∈ {0, . . . , |S|} uniformly at random.
For all j ̸= it, set αt+1[j] = αt[j]

If yit
1
λt

∑

j αt[j]yitK(xit ,xj) < 1, then:
Set αt+1[it] = αt[it] + 1

Else:
Set αt+1[it] = αt[it]

OUTPUT:αT+1

Fig. 3 The Kernelized Pegasos Algorithm.

We now show that the Pegasos algorithm can be implemented using only kernel eval-
uations, without direct access to the feature vectors φ(x) or explicit access to the weight
vector w. For simplicity, we focus on adapting the basic Pegasos algorithm given in Fig. 1
without the optional projection step. As we have shown in the proof of Thm. 1 (in particular,
Eq. (13)), for all t we can rewritewt+1 as

wt+1 =
1
λ t

t
∑

i=1

[yit ⟨wt, φ(xit)⟩ < 1] yitφ(xit) .

For each t, let αt+1 ∈ m be the vector such that αt+1[j] counts how many times example
j has been selected so far and we had a non-zero loss on it, namely,

αt+1[j] = |{t′ ≤ t : it′ = j ∧ yj ⟨wt′ ,φ(xj)⟩ < 1}| .

Instead of keeping in memory the weight vectorwt+1, we will representwt+1, using αt+1

according to

wt+1 =
1
λ t

m
∑

j=1

αt+1[j] yjφ(xj) .

It is now easy to implement the Pegasos algorithm by maintaining the vectorα. The pseudo-
code of this kernelized implementation of Pegasos is given in Fig. 3. Note that only one
element ofα is changed at each iteration. It is also important to emphasize that although the
feature mapping φ(·) was used in the above mathematical derivations, the pseudo-code of
the algorithm itself makes use only of kernel evaluations and obviously does not refer to the
implicit mapping φ(·).

Since the iterateswt remain as before (just their representation changes), the guarantees
on the accuracy after a number of iterations are still valid. We are thus guaranteed to find
an ϵ-accurate solution after Õ(1/(λϵ)) iterations. However, checking for non-zero loss at
iteration t might now require as many as min(t,m) kernel evaluations, bringing the over-
all runtime to Õ(m/(λϵ)). Therefore, although the number of iterations required does not
depend on the number of training examples, the runtime does.

It is worthwhile pointing out that even though the solution is represented in terms of the
variables α, we are still calculating the sub-gradient with respect to the weight vector w. A
different approach, that was taken, e.g., by Chapelle [10], is to rewrite the primal problem
as a function of α and then taking gradients with respect to α. Concretely, the Representer
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theorem guarantees that the optimal solution of Eq. (17) is spanned by the training instances,
i.e. it is of the form, w =

∑m
i=1 α[i]φ(xi). In optimizing Eq. (17) we can therefore focus

only on predictors of this form, parametrized through α ∈ m. The training objective can
then be written in terms of the α variables and kernel evaluations:

min
α

λ
2

m
∑

i,j=1

α[i]α[j]K(xi,xj) +
1
m

m
∑

i=1

max{0, 1− yi

m
∑

j=1

α[j]K(xi,xj)} . (19)

Now, one can use stochastic gradient updates for solving Eq. (19), where gradients should
be taken w.r.t. α. We emphasize again that our approach is different as we compute sub-
gradients w.r.t. w. Setting the step direction according to the sub-gradient w.r.t w has two
important advantages. First, only at most one new non-zero α[i] is introduced at each it-
eration, as opposed to a sub-gradient step w.r.t. α which will involve all m coefficients.
More importantly, the objective given in Eq. (19) is not necessarily strongly-convex w.r.t.α,
even though it is strongly convex w.r.t. w. Thus, a gradient descent approach using gradi-
ents w.r.t. α might require Ω(1/ϵ2) iterations to achieve accuracy ϵ. Interestingly, Chapelle
also proposes preconditioning the gradients w.r.t. α by the kernel matrix, which effectively
amounts to taking gradients w.r.t.w, as we do here. Unsurprisingly given the above discus-
sion, Chapelle observes much better results with this preconditioning.

5 Other prediction problems and loss functions

So far, we focused on the SVM formulation for binary classification using the hinge-loss. In
this section we show how Pegasos can seamlessly be adapted to other prediction problems
in which we use other loss functions.

The basic observation is that the only place in which we use the fact that ℓ(w; (x, y)) is
the hinge-loss (Eq. (2)) is when we calculated a sub-gradient of ℓ(w; (x, y)) with respect to
w. The assumptions we made are that ℓ is convex and that the norm of the sub-gradient is
at most R. The generality of these assumptions implies that we can apply Pegasos with any
loss function which satisfies these requirements.

5.1 Examples

Example 1 (Binary classification with the log-loss) Instead of the hinge-loss, other loss
functions can also be used with binary labels y ∈ {+1,−1}. A popular choice is the log-
loss defined as: ℓ(w, (x, y)) = log(1 + exp(−y ⟨w,x⟩)). It is easy to verify that the log
loss is a convex function whose gradient w.r.t.w satisfies ∥∇∥ ≤ ∥x∥.

Example 2 (Regression with the ϵ-insensitive loss)We now turn to regression problems over
the reals, that is y ∈ . The standard Support Vector Regression formulation uses the loss
function defined as ℓ(w; (x, y)) = max{0, | ⟨w,x⟩− y|− ϵ}. This loss is also convex with
a sub-gradient bounded by ∥x∥.

Example 3 (Cost-sensitive multiclass categorization) In multi-class categorization problems,
the goal is to predict a label y ∈ Y where Y is a finite discrete set of classes. A possible loss
function is the so-called cost-sensitive loss defined as:

ℓ(w; (x, y)) = max
y′∈Y

δ(y′, y)− ⟨w, φ(x, y)⟩+
〈

w, φ(x, y′)
〉

, (20)
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where δ(y′, y) is the cost of predicting y′ instead of y and φ(x, y) is a mapping from input-
label pair (x, y) into a vector space. See for example [11]. The multiclass loss is again a
convex loss function whose sub-gradient is bounded by 2maxy′ ∥φ(x, y′)∥.

Example 4 (Multiclass categorization with the log-loss) Given the same setting of the above
multiclass example, we can also generalize the log loss to handle multiclass problems. Omit-
ting the cost term, the multiclass loss amounts to:

ℓ(w; (x, y)) = log

⎛

⎝1 +
∑

r ̸=y

e⟨w,φ(x,r)⟩−⟨w,φ(x,y)⟩

⎞

⎠ , (21)

where φ(x, y) is defined above. The log-loss version of the multiclass loss is convex as well
with a bounded sub-gradient whose value is at most, 2maxy′ ∥φ(x, y′)∥.

Example 5 (Sequence prediction) Sequence prediction is similar to cost-sensitive multi-
class categorization, but the set of targets, Y , can be very large. For example, in phoneme
recognition tasks, X is the set of all speech utterances and Y is the set of all phoneme se-
quences. Therefore, |Y| is exponential in the length of the sequence. Nonetheless, if the
functions φ and δ adheres to a specific structure then we can still calculate sub-gradients
efficiently and therefore solve the resulting optimization problem efficiently using Pegasos.

To recap the examples provided above we give a table of the sub-gradients of some
popular loss functions. To remind the reader, given a convex function f(w), a sub-gradient
of f atw0 is a vector v which satisfies:

∀w, f(w)− f(w0) ≥ ⟨v,w −w0⟩ .

The following two properties of sub-gradients are used for calculating the sub-gradients in
the table below.

1. If f(w) is differentiable at w0, then the gradient of f at w0 is the unique sub-gradient
of f atw0.

2. If f(w) = maxi fi(w) for r differentiable functions f1, . . . , fr , and j = argmaxi fi(w0),
then the gradient of fj atw0 is a sub-gradient of f atw0.

Based on the above two properties, we now show explicitly how to calculate a sub-
gradient for several loss functions. In the following table, we use the notation z = ⟨wt,xi⟩.
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Loss function Subgradient

ℓ(z, yi) = max{0, 1− yiz} vt =

{

−yixi if yiz < 1

0 otherwise

ℓ(z, yi) = log(1 + e−yiz) vt = − yi
1+eyiz xi

ℓ(z, yi) = max{0, |yi − z|− ϵ} vt =

⎧

⎪

⎨

⎪

⎩

xi if z − yi > ϵ

−xi if yi − z > ϵ

0 otherwise

ℓ(z, yi) = max
y∈Y

δ(y, yi)− zyi + zy vt = φ(xi, ŷ) − φ(xi, yi)

where ŷ = argmax
y

δ(y, yi) − zyi + zy

ℓ(z, yi) = log

⎛

⎝1 +
∑

r ̸=yi

ezr−zyi

⎞

⎠ vt =
∑

r prφ(xi, r)− φ(xi, yi)

where pr = ezr/
∑

j

ezj

6 Incorporating a bias term

In many applications, the weight vector w is augmented with a bias term which is a scalar,
typically denoted as b. The prediction for an instance x becomes ⟨w,x⟩ + b and the loss is
accordingly defined as,

ℓ ((w, b); (x, y)) = max{0, 1− y(⟨w,x⟩+ b)} . (22)

The bias term often plays a crucial role when the distribution of the labels is uneven as is
typically the case in text processing applications where the negative examples vastly out-
number the positive ones. We now review several approaches for learning the bias term
while underscoring the advantages and disadvantages of each approach.

The first approach is rather well known and its roots go back to early work on pattern
recognition [14]. This approach simply amounts to adding one more feature to each instance
x thus increasing the dimension to n + 1. The artificially added feature always takes the
same value. We assume without loss of generality that the value of the constant feature is
1. Once the constant feature is added the rest of the algorithm remains intact, thus the bias
term is not explicitly introduced. The analysis can be repeated verbatim and we therefore
obtain the same convergence rate for this modification. Note however that by equating the
n + 1 component of w with b, the norm-penalty counterpart of f becomes ∥w∥2 + b2.
The disadvantage of this approach is thus that we solve a relatively different optimization
problem. On the other hand, an obvious advantage of this approach is that it requires no
modifications to the algorithm itself rather than a modest increase in the dimension and it
can thus be used without any restriction on At.
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An alternate approach incorporates b explicitly by defining the loss as given in Eq. (22)
while not penalizing for b. Formally, the task is to find an approximate solution to the fol-
lowing problem:

min
w,b

λ

2
∥w∥2 + 1

m

∑

(x,y)∈S

[1− y(⟨w,x⟩+ b)]+ . (23)

Note that all the sub-gradients calculations with respect tow remain intact. The sub-gradient
with respect to b is also simple to compute. This approach is also very simple to implement
and can be used with any choice ofAt, in particular, sets consisting of a single instance. The
caveat of this approach is that the function f ceases to be strongly convex due to the incor-
poration of b. Precisely, the objective function f becomes piece-wise linear in the direction
of b and is thus no longer strongly convex. Therefore, the analysis presented in the previous
section no longer holds. An alternative proof technique yields a slower convergence rate of
O(1/

√
T ).

A third method entertains the advantages of the two methods above at the price of a more
complex algorithm that is applicable only for large batch sizes (large values of k), but not
for the basic Pegasos algorithm (with k = 1). The main idea is to rewrite the optimization
problem given in Eq. (23) asminw λ

2 ∥w∥
2 + g(w;S) where

g(w;S) = min
b

1
m

∑

(x,y)∈S [1− y(⟨w,x⟩+ b)]+ . (24)

Based on the above, we redefine f(w;At) to be λ
2 ∥w∥

2 + g(w;At). On each iteration
of the algorithm, we find a sub-gradient of f(w;At) and subtract it (multiplied by ηt)
from wt. The problem however is how to find a sub-gradient of g(w;At), as g(w;At)
is defined through a minimization problem over b. This essentially amounts to solving the
minimization problem in Eq. (24). The latter problem is a generalized weighted median
problem that can be solved efficiently in time O(k). The above adaptation indeed work for
the case k = m where we have At = S and we obtain the same rate of convergence as in
the no-bias case. However, when At ̸= S we cannot apply the analysis from the previous
section to our case since the expectation of f(w;At) over the choice ofAt is no longer equal
to f(w;S). When At is large enough, it might be possible to use more involved measure
concentration tools to show that the expectation of f(w;At) is close enough to f(w;S) so
as to still obtain fast convergence properties.

A final possibility is to search over the bias term b in an external loop, optimizing the
weight vector w using Pegasos for different possible values of b. That is, consider the ob-
jective:

J(b;S) = min
w

1
m

∑

(x,y)∈S [1− y(⟨w,x⟩+ b)]+ . (25)

For a fixed b, the minimization problem in Eq. (25) is very similar to SVM training without
a bias term, and can be optimized using Pegasos. The objective J(b;S) is convex in the sin-
gle scalar variable b, and so J(b;S) can be optimized to within accuracy ϵ by binary search
using O(log 1/ϵ) evaluations of J(b;S), i.e. O(log 1/ϵ) applications of the Pegasos algo-
rithm. Since this modification introduced only an additional logarithmic factor, the overall
runtime for training an SVM with a bias term remains Õ(d/(λϵ)). Although incorporating
a regularized or unregularized bias term might be better in practice, the latter “outer loop”
approach is the only method that we are aware of which guarantees an overall runtime of
Õ(d/(λϵ)).
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7 Experiments

In this section we present experimental results that demonstrate the merits of our algorithm.
We start by demonstrating the practicality of Pegasos for solving large scale linear problems,
especially when the feature vectors are sparse. In particular, we compare its runtime on three
large datasets to the runtimes of the state-of-the-art solver SVM-Perf [21], a cutting plane
algorithm designed specifically for use with sparse feature vectors, as well as of two more
conventional SVM solvers: LASVM [2] and SVM-Light [20]. We next demonstrate that
Pegasos can also be a reasonable approach for large scale problems involving non-linear
kernels by comparing it to LASVM and SVM-Light on four large data sets using Gaussian
kernels. We then investigate the effect of various parameters and implementation choices
on Pegasos: we demonstrate the runtime dependence on the regularization parameter λ;
we explore the empirical behavior of the mini-batch variant and the dependence on the
mini-batch size k; and we compare the effect of sampling training examples both with and
without replacement. Finally, we compare Pegasos to two previously proposed methods that
are based on stochastic gradient descent: Norma [24] by Kivinen, Smola, Williamson and to
the method by Zhang [37].

We also include in our experiments a comparison with stochastic Dual Coordinate As-
cent (DCA). Following Pegasos’s initial presentation [31], stochastic DCAwas suggested as
an alternative optimization method for SVMs [18]. DCA shares numerous similarities with
Pegasos. Like Pegasos, at each iteration only a single (random) training example (yi,xi) is
considered, and if yi ⟨w,xi⟩ < 1, an update of the form w ← w + ηyixi is performed.
However, the DCA step size η is not predetermined, but rather chosen so as to maximize
the dual objective. DCA’s convergence properties and the differences between DCA and
Pegasos behavior are not yet well understood. For informational purposes, we include a
comparison to DCA in our empirical evaluations.

Our implementation of Pegasos is based on the algorithm from Fig. 1, outputting the last
weight vector rather than the average weight vector, as we found that in practice it performs
better. We did not incorporate a bias term in any of our experiments. We found that including
an unregularized bias term does not significantly change the predictive performance for any
of the data sets used. Furthermore, most methods we compare to, including [21,24,37,18],
do not incorporate a bias term either. Nonetheless, there are clearly learning problems where
the incorporation of the bias term could be beneficial.

We used our own implementation of Pegasos, as well as stochastic DCA, and both were
instrumented to periodically output the weight vectorw or, in the kernel case, the vector of
coefficients α. The source code for SVM-Perf, LASVM and SVM-Light were downloaded
from their respective authors’ web pages, and were similarly modified. These modifications
allowed us to generate traces of each algorithm’s progress over time, which were then used
to generate all plots and tables. Whenever a runtime is reported, the time spent inside the
instrumentation code, as well as the time spent loading the data file, is not included. All
implementations are in C/C++, and all experiments were performed on a single core of a
load-free machine with an Intel Core i7 920 CPU and 12G of RAM.

7.1 Linear kernel

Our first set of experiments, which evaluate the performance of Pegasos in constructing lin-
ear SVMs, were performed on three large datasets with very different feature counts and
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Fig. 4 Comparison of linear SVM optimizers. Primal suboptimality (top row) and testing classification error
(bottom row), for one run each of Pegasos, stochastic DCA, SVM-Perf, and LASVM, on the astro-ph (left),
CCAT (center) and cov1 (right) datasets. In all plots the horizontal axis measures runtime in seconds.

sparsity, which were kindly provided by Thorsten Joachims. The astro-ph dataset classi-
fies abstracts of papers from the physics ArXiv according to whether they belong in the
astro-physics section; CCAT is a classification task taken from the Reuters RCV1 collec-
tion; and cov1 is class 1 of the covertype dataset of Blackard, Jock & Dean. The following
table provides details of the dataset characteristics, as well as the value of the regularization
parameter λ used in the experiments (all of which are taken from [21]):

Dataset Training Size Testing Size Features Sparsity λ
astro-ph 29882 32487 99757 0.08% 5× 10−5

CCAT 781265 23149 47236 0.16% 10−4

cov1 522911 58101 54 22.22% 10−6

Fig. 4 contains traces of the primal suboptimality, and testing classification error, achieved
by Pegasos, stochastic DCA, SVM-Perf, and LASVM. The latter of these is not an algo-
rithm specialized for linear SVMs, and therefore should not be expected to perform as well
as the others. Neither Pegasos nor stochastic DCA have a natural stopping criterion. Hence,
in order to uniformly summarize the performance of the various algorithms, we found the
first time at which the primal suboptimality was less than some predetermined termination
threshold ϵ. We chose this threshold for each dataset such that a primal suboptimality less
than ϵ guarantees a classification error on test data which is at most 1.1 times the test data
classification error at the optimum. (For instance, if full optimization of SVM yields a test
classification error of 1%, then we chose ϵ such that a ϵ-accurate optimization would guar-
antee test classification error of at most 1.1%.) The time taken to satisfy the termination
criterion, on each dataset, for each algorithm, along with classification errors on test data
achieved at termination, are reported in Table 1.
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Dataset Pegasos SDCA SVM-Perf LASVM
astro-ph 0.04s (3.56%) 0.03s (3.49%) 0.1s (3.39%) 54s (3.65%)
CCAT 0.16s (6.16%) 0.36s (6.57%) 3.6s (5.93%) > 18000s
cov1 0.32s (23.2%) 0.20s (22.9%) 4.2s (23.9%) 210s (23.8%)

Table 1 Training runtime and test error achieved (in parentheses) using various optimization methods on
linear SVM problems. The suboptimality thresholds used for termination are ϵ = 0.0275, 0.00589 and
0.0449 on the astro-ph, CCAT and cov1 datasets (respectively). The testing classification errors at the optima
of the SVM objectives are 3.36%, 6.03% and 22.6%.

Based both on the plots of Fig. 4, and on Table 1, we can see that, SVM-Perf is a very fast
method on it own. Indeed, SVM-Perf was shown in [21] to achieve a speedup over SVM-
Light of several orders of magnitude on most datasets. Nonetheless, Pegasos and stochastic
DCA achieve a significant improvement in run-time over SVM-Perf. It is interesting to note
that the performance of Pegasos does not depend on the number of examples but rather
on the value of λ. Indeed, the runtime of Pegasos for the Covertype dataset is longer than
its runtime for CCAT, although the latter dataset is larger. This issue is explored further
in Sec. 7.3 given in the sequel.

7.2 Experiments with Gaussian kernels

Pegasos is particularly well suited for optimization of linear SVMs, in which case the run-
time does not depend on the data set size. However, as we show in the sequel, the kernelized
Pegasos variant described in section 4 gives good performance on a range of kernel SVM
problems, provided that these problems have sufficient regularization. Although Pegasos
does not outperform state-of-the-art methods in our experiments, it should be noted that
Pegasos is a very simple method to implement, requiring only a few lines of code.

The experiments in this section were performed on four datasets downloaded from Léon
Bottou’s LASVM web page2. The USPS and MNIST datasets were used for the task of
classifying the digit 8 versus the rest of the classes. In the following table, γ is the parameter
controlling the width of the Gaussian kernel K (x, y) = e−γ∥x−y∥2

2 , and λ is the Pegasos
regularization parameter.

Dataset Training Size Testing Size γ λ
Reuters 7770 3299 1 1.29× 10−4

Adult 32562 16282 0.05 3.07× 10−5

USPS 7329 1969 2 1.36× 10−4

MNIST 60000 10000 0.02 1.67× 10−5

The parameters for the Reuters dataset are taken from [2], while those for the Adult
dataset are from [29]. The parameters for the USPS and MNIST datasets are based on those
in [2], but we increased the regularization parameters by a factor of 1000. This change
resulted in no difference in the testing set classification error at the optimum on the USPS
dataset, and increased it from 0.46% to 0.57% on MNIST. We discuss the performance of
Pegasos with smaller values of the regularization parameter λ in the next section.

Fig. 5 contains traces of the primal suboptimalities in both linear and log scales, and the
testing classification error, achieved by Pegasos, stochastic DCA, SVM-Light, and LASVM.

2 http://leon.bottou.org/projects/lasvm
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Fig. 5 Comparison of kernel SVM optimizers. Primal suboptimality (top row), primal suboptimality in log
scale (middle row) and testing classification error (bottom row), for one run each of Pegasos, stochastic DCA,
SVM-Light, and LASVM, on the Reuters (left column), Adult (center column) and USPS (right column)
datasets. Plots of traces generated on the MNIST dataset (not shown) appear broadly similar to those for the
USPS dataset. The horizontal axis is runtime in seconds.

As in the linear experiments, we chose a primal suboptimality threshold for each dataset
which guarantees a testing classification error within 10% of that at the optimum. The run-
time required to achieve these targets, along with the test classification errors, are reported
in Table 2.

As in the linear case, Pegasos (and stochastic DCA) achieve a reasonably low value
of the primal objective very quickly, much faster than SVM-Light. However, on the USPS
and MNIST datasets, very high optimization accuracy is required in order to achieve near-
optimal predictive performance, and such accuracy is much harder to achieve using the
stochastic methods. Note that the test error on these data sets is very small (roughly 0.5%).

Furthermore, when using kernels, LASVM essentially dominates Pegasos and stochastic
DCA, even when relatively low accuracy is required. On all four datasets, LASVM appears
to enjoy the best properties of the other algorithms: it both makes significant progress dur-
ing early iterations, and converges rapidly in later iterations. Nevertheless, the very simple
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method Pegasos still often yields very good predictive performance, with a competitive run-
time.

It can also be interesting to compare the different methods also in terms of the number
of kernel evaluations performed. All of the implementations use the same sparse represen-
tation for vectors, so the amount of time which it takes to perform a single kernel evaluation
should, for each dataset, be roughly the same across all four algorithms. However, vari-
ous other factors, such overhead resulting from the complexity of the implementation, or
caching of portions of the kernel matrix, do affect the number of kernel evaluations which
are performed in a given unit of time. Nevertheless, the discrepancy between the relative
performance in terms of runtime and the relative performance in terms of number of kernel
evaluations is fairly minor. To summarize this discrepancy, we calculated for each method
and each data set the kernel evaluation throughput: the number of kernel evaluations per-
formed per second of execution in the above runs. For each data set, we then normalized
these throughputs by dividing each method’s throughput by the Pegasos throughput, thus
obtaining a relative measure indicating whether some methods are using much more, or
much fewer, kernel evaluations, relative to their runtime. The resulting relative kernel eval-
uation throughputs are summarized in Table 3. It is unsurprising that Pegasos and stochastic
DCA, as the simplest algorithms, tend to have performance most dominated by kernel eval-
uations. If we were to compare the algorithms in terms of the number of kernel evaluations,
rather than elapsed time, then LASVMs performance would generally improve slightly rel-
ative to the others. But in any case, the change to the relative performance would not be
dramatic.

7.3 Effect of the regularization parameter λ

We return now to the influence of the values of the regularization parameter λ on the runtime
of Pegasos and stochastic DCA. Recall that in the previous section, we choose to use a much
larger value of λ in our experiments with the MNIST and USPS datasets. Fig. 6 shows
the suboptimalities of the primal objective achieved by Pegasos and stochastic DCA after

Dataset Pegasos SDCA SVM-Light LASVM
Reuters 15s (2.91%) 13s (3.15%) 4.1s (2.82%) 4.7s (3.03%)
Adult 30s (15.5%) 4.8s (15.5%) 59s (15.1%) 1.5s (15.6%)
USPS 120s (0.457%) 21s (0.508%) 3.3s (0.457%) 1.8s (0.457%)
MNIST 4200s (0.6%) 1800s (0.56%) 290s (0.58%) 280s (0.56%)

Table 2 Training runtime and test error achieved (in parentheses) using various optimization methods on
linear SVM problems. ϵ = 0.00719, 0.0445, 0.000381 and 0.00144 on the Reuters, Adult, USPS and
MNIST datasets (respectively). The testing classification errors at the optima of the SVM objectives are
2.88%, 14.9%, 0.457% and 0.57%.

Dataset Pegasos SDCA SVM-Light LASVM
Reuters 1 1.03 1.14 0.88
Adult 1 0.90 0.94 0.60
USPS 1 0.97 0.69 0.81

MNIST 1 0.94 0.99 0.61

Table 3 Relative kernel evaluation throughputs: the number of kernel evaluations per second of runtime
divided by Pegasos’s number of kernel evaluations per second of runtime on the same dataset.
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Fig. 6 Demonstration of dependence of Pegasos’ performance on regularization, on the USPS dataset. This
plot shows (on a log-log scale) the primal suboptimalities of Pegasos and stochastic DCA after certain fixed
numbers of iterations, for various values of λ.

certain fixed numbers of iterations, on the USPS dataset, as a function of the regularization
parameter λ. As predicted by the formal analysis, the primal suboptimality after a fixed
number of Pegasos iterations is inversely proportional to λ. Hence, the runtime to achieve a
predetermined suboptimality threshold would increase in proportion to λ. Very small values
of λ (small amounts of regularization) result in rather long runtimes. This phenomenon has
been observed before and there have been rather successful attempts to improve Pegasos
when λ is small (see for example [13]).

It is interesting to note that stochastic DCA does not seem to suffer from this problem.
Although Pegasos and stochastic DCA have comparable runtimes for moderate values of
λ, stochastic DCA is much better behaved when λ is very small (i.e. when the problem is
barely infused with regularization).

7.4 Experiments with the Mini-Batch Variant

In this section, we explore the influence of the mini-batch size, k, of the mini-batch variant
of Fig. 2. Increasing k does not reduce our theoretical guarantees on the number of itera-
tions T that are required to attain a primal suboptimality goal. Since the runtime of each
iteration scales linearly with k, the convergence analysis suggests that increasing k would
only cause a linear increase in the overall runtime kT required to achieve a predetermined
accuracy goal. We show that in practice, for moderate sizes of k, a roughly linear (in k)
improvement in the number of required iterations T can be achieved, leaving the overall
runtime kT almost fixed. For a serial implementation of Pegasos, this result would be un-
interesting. However, using large samples for computing the subgradients can be useful in
a parallel implementation, where the O(k) work of each iteration could be done in parallel,
thus reducing the overall required elapsed time.

Fig. 7 includes two plots which illustrate the impact of k on the performance of Pegasos.
The first plot shows that, on the astro-ph dataset, for sufficiently small values of k, the
primal suboptimality achieved after T iterations is roughly proportional to the product kT .
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Fig. 7 The effect of the mini-batch size on the runtime of Pegasos for the astro-ph dataset. The first plot
shows the primal suboptimality achieved for certain fixed values of overall runtime kT , for various values of
the mini-batch size k. The second plot shows the primal suboptimality achieved for certain fixed values of k,
for various values of kT . Very similar results were achieved for the CCAT dataset.

This property holds in the region for which the curves are roughly horizontal, which in this
experiment, corresponds to mini-batch sizes of up to a few hundred training points.

Note also that the three curves on the left hand side plot of Fig. 7 start increasing at
different values of k. It appears that, when k is overly large, there is initially indeed a loss
of performance. However, as the number of iterations increases, the slower behavior due to
the mini-batch size is alleviated.

The second plot further underscores this phenomenon. We can see that, for three values
of k, all significantly greater than 100, the experiments with the largest mini-batch size
made the least progress while performing the same amount of computation. However, as the
number of iterations grows, the suboptimalities become similar. The end result is that the
overall runtime does not seem to be strongly dependent on the mini-batch size. We do not
yet have a good quantitative theoretical understanding of the mini-batch results observed
here.

7.5 Comparison of sampling procedures

The analysis of Pegasos requires sampling with replacement at each iteration. Based on pri-
vate communication with Léon Bottou we experimented with sampling without replacement.
Specifically, we chose a random permutation over the training examples and performed up-
dates in accordance to the selected order. Once we traversed all the permuted examples, we
chose a new permutation and iteratively repeated the process. We also experimented with a
further simplified approach in which a single random permutation is drawn and then used
repeatedly. Fig. 8 indicates that, on the astro-ph dataset, the sampling without replacement
procedures outperform significantly the uniform i.i.d. sampling procedure. Further, it seems
that choosing a new permutation every epoch, rather than keeping the permutation intact,
provides some slight further improvement. We would like to note though that while the last
experiment underscores the potential for additional improvement in the convergence rate,
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Fig. 9 Comparisons of Pegasos to Norma (left), and Pegasos to stochastic gradient descent with a fixed
learning rate (right) on the Astro-Physics datset. In the left hand side plot, the solid curves designate the
objective value while the dashed curves show the test loss.

the rest of the experiments reported in the paper were conducted in accordance with the
formal analysis using uniform sampling with replacements.

7.6 Comparison to other stochastic gradient methods

In our last set of experiments, we compared Pegasos to Norma [24] and to a variant of
stochastic gradient descent due to Zhang [37]. Both methods share similarities with Pe-
gasos when k = 1, and differ in their schemes for setting the learning rate ηt. Thm. 4
from [24], suggests to set ηt = p/(λ

√
t), where p ∈ (0, 1). Based on the bound given

in the theorem, the optimal choice of p is 0.5(2 + 0.5T−1/2 )1/2, which for t ≥ 100 is
in the range [0.7,0.716]. Plugging the optimal value of p into Thm. 4 in [24] yields the
bound O(1/(λ

√
T )). We therefore conjectured that Pegasos would converge significantly
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faster than Norma. On the left hand side of Fig. 7.6 we compare Pegasos (with the optional
projection step) to Norma on the Astro-Physics dataset. We divided the dataset to a training
set with 29,882 examples and a test set with 32,487 examples. We report the final objective
value and the average hinge-loss on the test set. As in [21], we set λ = 2 · 10−4. It is clear
from the figure that Pegasos outperforms Norma. Moreover, Norma fails to converge even
after 106 iterations. The poor performance of Norma can be attributed to the fact that the
value of λ here is rather small.

We now turn to comparing Pegasos to the algorithm of Zhang [37] which simply sets
ηt = η, where η is a (fixed) small number. A major disadvantage of this approach is that
finding an adequate value for η is a difficult task on its own. Based on the analysis given
in [37] we started by setting η to be 10−5. Surprisingly, this value turned out to be a poor
choice and the optimal choice of η was substantially larger. On the right hand side of Fig. 7.6
we illustrate the convergence of stochastic gradient descent with ηt set to be a fixed value
from the set {0.001,0.01, 0.1,1, 10}. It is apparent that for some choices of η the method
converges at about the same rate of Pegasos while for other choices of η the method fails
to converge. For large datasets, the time required for evaluating the objective is often much
longer than the time required for training a model. Therefore, searching for η is significantly
more expensive than running the algorithm a single time. The apparent advantage of Pegasos
is due to the fact that we do not need to search for a good value for η but rather have a
predefined schedule for ηt.

8 Conclusions

We described and analyzed a simple and effective algorithm for approximately minimizing
the objective function of SVM.We derived fast rate of convergence results and experimented
with the algorithm. Our empirical results indicate that for linear kernels, Pegasos achieves
state-of-the-art results, despite of, or possibly due to, its simplicity. When used with more
complex kernels, Pegasos may still be a simple competitive alternative to more complicated
methods, especially when fairly lax optimization can be tolerated.

Recently, Bottou and Bousquet [4] proposed to analyse optimization algorithms from the
perspective of the underlying machine learning task. In a subsequent paper [32], we analyze
Pegasos and other SVM training methods from a machine learning perspective, and showed
that Pegasos is more efficient than other methods when measuring the runtime required to
guarantee good predictive performance (test error).
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