Applied Machine Learning

CIML Chaps 4-5 (A Geometric Approach)

“A ship in port is safe, but that
is not what ships are for.”

— Grace Hopper (1906-1992)

Week 5: Extensions and Variations of
Perceptron, and Practical Issues

Professor Liang Huang

some slides from A. Zisserman (Oxford)



Trivia: Grace Hopper and the first bug

® Edison coined the term “bug” around 1878 and since then it had been widely used
In engineering

® Hopper was associated with the discovery of the first computer bug in 1947
which was a moth stuck in a relay
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WWeek 5: Perceptron in Practice

® Problems with Perceptron A ship in port is saje, but that

is not what ships are for.”

® doesn’t converge with inseparable data _ Grace Hopper (1906-1992)

® update might often be too “bold”
® doesn’t optimize margin
® result is sensitive to the order of examples
® Ways to alleviate these problems (without SVM/kernels)
® Part ll: voted perceptron and average perceptron
® Part lll: MIRA (margin-infused relaxation algorithm)

® Part IV: Practical Issues and HWI

® PartV:"“Soft” Perceptron: Logistic Regression



initialize w < 0

Recap of Week 4

input: training data D
output: weights w

while not converged

for (x,y) € D

if y(w-x) <0
W < W + yX

“idealized” ML

Input x —

Outputy —

“actual’” ML

Input x —
Outputy —
feature map ¢ —
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Training
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—> Model w
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$ python perc demo.py

Python Demo

(requires numpy and matplotlib)
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Part |l:Voted and Averaged Perceptron
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Brief History of Perceptron

batch - 1997

Soﬁ_marg\“ Cortes/Vapnik

" ¥ SVM
"“e Oy TS~

. SUb
NN 8 Adien; 2007--2010*
*((\%(% descent Singer group
W\ Pegasos
minibatch
online 2003 2006
- Crammer/Singer =% Singer group
conservative lupdates MIRA aggressive
1959 1962 969+ 1999
Rosenblatt = Novikoff = Minsky/Papert D EA D Freund/Schapire
invention proof book killed it voted/avg: revived
inseparable case
2002 2005
Collins > McDonald/Crammer/Pereira
structured structured MIRA

*mentioned in lectures but optional

th | d in detail
(others papers all covered in detail) ATST Research ox-AT&T and students v



Voted/Avged Perceptron

® problem: later examples dominate earlier examples

® solution: voted perceptron (Freund and Schapire, 1999)

® record the weight vector after each example in D

not just after each update!
® and vote on a new example using |D| models

® shown to have better generalization power

® averaged perceptron (from the same paper)
® an approximation of voted perceptron
® just use the average of all weight vectors

® can be implemented efficiently



Voted Perceptron

Input: a labeled training set ((X1,%1), .-, (Xm, Ym)) our notation: (X(}), y(|))
number of gpochs T Vis weight,
Output: a list of weighted perceptrons ((vi,¢1), ..., (Vk,Ck)) o
C is its # of votes
e Initialize: k :=0,vy :=0,¢; := 0. . . .
> > Large Margin Classification
PS Repeat T times: Using the Per ceptron Algorithm
. . YOAV I'REUND yoav @research.att.com
— For 1 = 1, ceey TN AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A205, Florham Park, NJ 07932-097 !
% Compute pI‘CdiCtiOIl: y — sign(v L x,l.) ROBERT E. SCHAPIRE schapirc@rescarch.att.com
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A279, Florham Park, NJ 07932-0971]

¥ Ify=ythencg :=cp + 1.
else vy = vi + ¥iX;;

:’k:i-_l L: 'l | if correct, increase the
- | current model’s # of votes;

Prediction :
Given: the list of weighted perceptrons: ((vi,¢1),. .., (Vk,ck)) otherwise create a new

an unlabeled instance: x model with | vote
compute a predicted label y as follows:

k
§ = Z c; sign(v; - X);  y = sign(s) .
1=1




Experiments

20

dev set error
= o

&)

L | T T L] « = s & =1

random (unnorm)
last (unnorm)
avg (unnorm)

| vote
Vanlll \\_ L —‘-—-‘\-\—‘\
d De '\ ‘ AT ] i
P Ceptro VAR TS TR

0.1

Epoch

10



® voted perceptron is not scalable

® and does not output a single model

Averaged Perceptron

® avg perceptron is an approximation of voted perceptron

® actually, summing all weight vectors is enough; no need to divide

initialize w < 0; w, < 0
while not converged
for (x,y) € D
if y(w-x) <0
W <— W + yYX
W, < W +— W
output: summed weights w

<

after each example, not after each update!

w) JAwD

w2 dAwD|] Aw®

w3 HdAw®| Aw®  |Aw®

w@® AW Aw® Aw®]  Aw®




Efficient Implementation of Averaging

® naive implementation (running sum W;s) doesn’t scale either

® OK for low dim. (HW1); too slow for high-dim. (HVV3)

® very clever trick from Hal Daume (2006, PhD thesis)

w(® - — - Awl
initialize w < 0; w, < 0; c <+ 0 wo=1-AwP +2. Aw® + 3. Aw®
while not converged /
for (x,y) € D wl) dAwD] 1. aw®
if y(w-x) <0 . AwG
W WYX C w2 dAwD|] Aw® 3. Aw®

W, < W, + CyYyX
c<—c+1:
output: cw — Wa

w3 dAwD] Aw® |Aw®

v

4
dafter each update, not after each example! wt =Aw® Aw® JAw®]  Aw®

c-w—w,=4-AwD + 3. AWD £ 2. AwWO® + 1. Aw® = w) + w® 4 w® 4 w® W 12



Part lll: MIRA

® perceptron often makes bold updates (over-correction)

® and sometimes too small updates (under-correction)

® but hard to tune learning rate

® “just enough” update to correct the mistake!

/ Y= WX
W <— W - 5 X . |
||XH under-correction
easy to show: N
D
W/°X_(W'y_w.xx)-x— /
- HXH2 7 s LE perceptron W
YRR
.. MIRA W’
« e . A
margin-infused relaxation %
' i W /[
algorithm (MIRA) over-correction L)L )



Example: Perceptron under-correction

perceptron W/

14



MIRA: just enough

. / 2
min |w — w|
W/

s.t. wox > 1

minimal change to ensure
functional margin of |

(dot-product w’ - x=1)

MIRA = |-step SVM

functional margin: y(w - x)

y(W - x)

geometric margin:
lw

|5



MIRA: functional vs geom. margin

. / 2
min |w — w|
W/

s.t. wox > 1

minimal change to ensure
functional margin of |

(dot-product w’ - x=1)

MIRA = |-step SVM

functional margin: y(w - x)

y(W - x)

geometric margin:
lw

|6



® aggressive version of MIRA

® also update if correct but not confident enough
i.e., functional margin (y w-X) not big enough
® p-aggressive MIRA: update if y(W-X) <p (0<=p<lI)
MIRA is a special case with p=0: only update if misclassified!
update equation is same as MIRA
i.e., after update, functional margin becomes |

® larger p leads to a larger geometric margin but slower convergence
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Demo
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Demo
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Part IV: Practical Issues

“A ship in port is safe, but that
is not what ships are for.”

— Grace Hopper (1906-1992)

® you will build your own linear classifiers for HVW2 (same data as HW )

® slightly different binarizations
® for k-NN, we binarize all categorical fields but keep the two numerical ones
® for perceptron (and most other classifiers), we binarize numerical fields as well

® why? hint: larger “age” always better? more “hours” always better?

20



Useful Engineering Tips:

averaging, shuffling, variable learning rate, fixing feature scale

® averaging helps significantly; MIRA helps a tiny little bit
® perceptron < MIRA < avg. perceptron = avg. MIRA = SVM
® shuffling the data helps hugely if classes were ordered (HWI)

® shuffling before each epoch helps a little bit big margin
® variable (decaying) learning rate often helps a little small margin i

¢ |/(total#updates) or |/(total#examples) helps
® any requirement in order to converge!
how to prove convergence now?
® centering of each dimension helps (Ex|/HW)
® why?! => smaller radius, bigger margin!
® unit variance also helps (why?) (ExI/HWI)

® )-mean, |-var => each feature = a unit Gaussian 5



Feature Maps in Other Domains

® how to convert an image or text to a vector! o

| \\\\_\:.' . 23x23 RGB image
28x28 grayscale image \
gig £ X € [R23x23x3
® image \E
X E £784 g \w /‘
r/ed 88%
green: 88%
. . blue: 88%
“a” “abbreviations” “zoology”
1 0 0
0 1 0
0 0 0 ® text  “one-hot” representation of words
| | (all binary features)
0 0 0
0 0 1 , .
0 0 ) in deep learning there are other feature maps

22



PartV: Perceptron vs. Logistic Regression

® |ogistic regression is another popular linear classifier
® can be viewed as “soft” or “probabilistic” perceptron

® same decision rule (sign of dot-product), but prob. output

inputs  weights

% perceptron
1w weighted sum step function f(X) — Sign(w . X)
wy - Er/
Sigmoid Activation Function 4
Wy 10 -
, 06- logistic regression
i 1
§ [(x) =0o(w-x)=
07 - 1 + e~ WX
0.0 -

100 -75 -50 -25 00 25 50 75 100

X Axis 23



Logistic vs. Linear Regression

® linear regression is regression applied to real-valued output using linear function

® |ogistic regression is regression applied to 0-1 output using the sigmoid function

o.' °
| feature o linear
10
ARRTE:
20 a0 ' 10 20 30 40 50 60
1C [ J ([ J
1 feature o i lOGISTIC
® samples (y=0)
] & = logIstiC: 8(2)

near. Z

2 features

Feature1 4 B 1

c Eaatiiroa 7

https://florianhartl.com/logistic-regression-geometric-intuition.html 24



https://florianhartl.com/logistic-regression-geometric-intuition.html

Why Logistic instead of Linear

® linear regression easily dominated by distant points

® causing misclassification

1 —
o(wz + b) fit to y:\)/”
na} /’ |
: 0.5¢t---=---=------ A - S
we+bfittoy—od / ~
02 /
0!

« fit of wx + b dominated by more 1]
distant points

e causes misclassification 0.5

* instead LR regresses the sigmoid |
to the class data

o.1pF
0

http://www.robots.ox.ac.uk/~az/lectures/ml/20| | /lect4.pdf
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http://www.robots.ox.ac.uk/~az/lectures/ml/2011/lect4.pdf

Why Logistic instead of Linear

® linear regression easily dominated by distant points

® causing misclassification

LR linear LR \ linear
% /

XxX
2t xxg’i&
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Why 0/I instead of +/-|

® perc:y=+| or -I; logistic regression: y=1 or 0
® reason: want the output to be a probability

® decision boundary is still linear: p(y=1 | x) = 0.5

27



Logistic Regression: Large Margin

® perceptron can be viewed roughly as “step” regression

® |ogistic regression favors large margin; SVM: max margin

® in practice: perc. << avg. perc. = logistic regression = SYM

J
7
—
-10 4 -5 .

/

A——A

=

- A
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logistic regression
1958

cond. random fields
2001

deep learning
~1986; 2006-now

|

multilayer perceptron

|

perceptron SVM
1958 |964;|995
\ /
kernels
1964

voted/avg. perceptron
1999

v

structured perceptron StrUCt‘;ggd SVM
2002
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