Dynamic Programming IOI

- $\mathrm{DP}=$ recursion (divide-n-conquer) + caching (overlapping subproblems)
- the simplest example is Fibonacci

DP2: bottom-up: $O(n)$
def fib0 $(n):$
$a, b=1,1$
for i in range $(3, n+1):$
$a, b=a+b, a$
return a

```
```

def fib0(n):

```
```

def fib0(n):
f = [1, 1]
f = [1, 1]
for i in range(3, n+1):
for i in range(3, n+1):
fibs.append(f[-1]+f[-2])
fibs.append(f[-1]+f[-2])
return f[-1]

```
```

 return f[-1]
    ```
```

DPI: top-down with memoization:O(n)

```
fibs={1:1, 2:1} # hash table (dict)
def fibl(n):
    if n not in fibs:
        fibs[n] = fib1(n-1) + fib1(n-2)
    return fibs[n]
```


Number of Bitstrings

- number of n-bit strings that do not have 00 as a substring
- e.g. $n=I: 0, I ; n=2: 0|, I 0, I| ; n=3: 0|0,0| I,|0|,||0, I||$
- what about $n=0$?
- last bit" I " followed by $f(n-I)$ substrings
- last two bits " 01 " followed by $f(n-2)$ substrings

$$
\begin{aligned}
& f(n)=f(n-1)+f(n-2) \\
& f(I)=2, f(0)=1
\end{aligned}
$$

Max Independent Set (MIS)

- max weighted independent set on a linear-chain graph
- e.g. 9 - $10-8-5-2-4$; best $\operatorname{MIS}:[9,8,4]=21$
- subproblem: $f(n)$-- max independent set for $a[I] . . a[n]$
(vs. greedy: $[10,5,4]=19$)

$$
f(n)=\max \{f(n-1), \quad f(n-2)+a[n]\}
$$

(I-based index)

recursively backtrack the optimal solution

Summary

- Divide-and-Conquer $=$ divide $+\quad$ conquer $+\quad$ combine
- Dynamic Programming = multiple divides + memoized conquer + summarized combine
- two implementation styles
- I. recursive top-down + memoization
- 2. bottom-up
- backtracking to recover best solution for optimization problems
- I. backpointers (recommended); 2. store subsolutions (not recommended - often slows down); 3. recompute on-the-fly
- two operators: \oplus for summary (across multiple divides) and \otimes for combine (within a divide)
- counting problems vs. optimization problems ("cost-reward model")
- three steps in solving a DP problem
- define the subproblem
- recursive formula
- base cases

Deeper Understanding of DP

- divide-n-conquer
- single divide, independent conquer, combine
- DP = divide-n-conquer with multiple divides
- for each possible divide
- divide
- conquer with memoization

| | \oplus | \otimes |
| :---: | :---: | :---: |
| Fib | + | \mathbf{x} |
| MIS | \max | + |
| \# BSTs | + | \mathbf{x} |
| knapsack | \max | + |
| shortest path | \min | + |

- combine subsolutions using the combination operator \otimes
- summarize over all possible divides using the summary operator \oplus
- multiple divides => overlapping subproblems

$$
B(n)=\oplus_{i=1}^{n}(B(i-1) \otimes B(n-i))
$$

- each single divide => independent subproblems! $B(0)=1$

Unary vs. Binary Divides

(a) : $T(n)=2 T(n / 2)+\ldots$
(b) : $T(n)=T(n-1)+\ldots$
(c) : $T(n)=T(n / 2)+\ldots$

| | branching (binary divide) | one-sided (unary divide) |
| :---: | :---: | :---: |
| divide-n-
 conquer | quicksort, best-case | quicksort, worst-case (b) |
| | mergesort | quickselect: worst (b), best (c) |
| | balanced) tree traversal (DFS) | binary search: (c) |
| | heapify (top-down) | search in BST: worst (b), best (c) |
| | of BSTs (hw5), midterm | Fib, \# of bitstrings (hw5)... |
| | optimal BST, final | max indep. set (hw5) |
| | RNA folding (hwl0) | knapsack (hw6), midterm |
| | matrix-chain multiplication, ... | LCS, LIS, edit-distance,... |

Two Divides vs. Multiple Divides (\# of Choices)

two divides

multiple divides

\# of BSTs (hw5)
max indep. set (hw5)
unbounded knapsack (hw6)

DP
0-I knapsack (hw6)
bounded knapsack (hw6)

Viterbi (hw8)

RNA folding (hwlo)

Viterbi Algorithm for DAGs

I. topological sort
2. visit each vertex v in sorted order and do updates

- for each incoming edge (u, v) in E
- use $\mathrm{d}(\mathrm{u})$ to update $\mathrm{d}(\mathrm{v}): \quad d(v) \oplus=d(u) \otimes w(u, v)$
- key observation: $\mathrm{d}(\mathrm{u})$ is fixed to optimal at this time

- time complexity: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Variant I:forward-update

I. topological sort
2. visit each vertex v in sorted order and do updates

- for each outgoing edge (v, u) in E
- use $\mathrm{d}(\mathrm{v})$ to update $\mathrm{d}(\mathrm{u}): \quad d(u) \oplus=d(v) \otimes w(v, u)$
- key observation: $\mathrm{d}(\mathrm{v})$ is fixed to optimal at this time

- time complexity: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Variant 2: Recursive Descent

- Top-down Recursion + Memoization $=$ Bottom-up
- Start from the target vertex, going backwards
- remember each visited vertex
- Sometimes easier to implement
- There is a tradeoff b/w top-down and bottom-up

One-way vs. Two-way Divides (Graph vs. Hypergraph)

| | two-way (binary divide) | one-way (unary divide) |
| :---: | :---: | :---: |
| divide-nconquer | quicksort, best-case | quicksort, worst-case |
| | mergesort | quickselect |
| | tree traversal (DFS) | binary search |
| | heapify (top-down) | search in BST |
| DP | - \# of BSTs (hw5) | Fib, \# of bitstrings (hw5). |
| | d) optimal BST | max indep. set (hw5) |
| | - ${ }^{\text {c RNA folding (} \mathrm{hwl} 10 \text {) }}$ | knapsack (all kinds, hw6) |
| | context-free parsing | Viterbi (hw8) |
| | matrix-chain multiplication, . | LCS, LIS, edit-distance,... |

Viterbi Algorithm for DAGs

I. topological sort
2. visit each vertex v in sorted order and do updates

- for each incoming edge (u, v) in E
- use $\mathrm{d}(\mathrm{u})$ to update $\mathrm{d}(\mathrm{v}): \quad d(v) \oplus=d(u) \otimes w(u, v)$
- key observation: $\mathrm{d}(\mathrm{u})$ is fixed to optimal at this time

- time complexity: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Viterbi Algorithm for DA

I. topological sort
2. visit each vertex v in sorted order and do updates

- for each incoming hyperedge $\mathrm{e}=\left(\left(\mathrm{u}_{\mathrm{I}}, . ., \mathrm{u}_{\mathrm{e} \mid}\right), \mathrm{v}, \mathrm{w}(\mathrm{e})\right)$
- use $d\left(u_{i}\right)$'s to update $d(v)$
- key observation: $\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}\right)$'s are fixed to optimal at this time

- time complexity: $\mathrm{O}(\mathrm{V}+\mathrm{E})$
(assuming constant arity)

Example: RNA Folding and CKY Parsing

- typical instance of the generalizedViterbi for DAHs
- many variants of CKY ~ various topological ordering
- Nussinov algorithm in RNA is almost identical to CKY but w/o overcounting

bottom-up

left-to-right

right-to-left
all $O\left(n^{3}\right)$

RNA Folding Example

Nussinov Algorithm - Traceback Example

k-best Viterbi on Graph

- simple extension of Viterbi to solve k-best on graphs and hyper graphs

incoming[v]
cf. teams problem in HW4
for each node v, compute its kbest distances from the kbest of each incoming node u

I-best: $O(E+V)$
k -best: $O\left(E+V k \log d_{\text {max }}\right)$ where $d_{\text {max }}$ is the max in-degree
can improve it to: (cf. midterm \& teams, w/ quickselect)
k-best: $O(E+V k \log k) \quad$ (assume $k \ll d_{\text {max }}$)
("most states do not have anybody on team USA")

k-best Viterbi on Hypergraph

- simple extension of Viterbi to solve k-best on graphs and hyper graphs cf. midterm

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 / 8
\end{array}
$$

| $\begin{aligned} & \operatorname{opt}[i, j]=\oplus\left\{\begin{array}{l} \operatorname{opt}[i, j-1] \\ \underset{i \leq p<j}{\oplus}(\operatorname{opt}[i \end{array}\right. \\ & \operatorname{opt}[i, i]=\operatorname{opt}[i, i-1]=1 \end{aligned}$ | | | |
| :---: | :---: | :---: | :---: |
| opt | \oplus | * | $1{ }^{\circ}$ |
| best | max | + | 0 |
| total | + | X | 1 |

$$
(k=3)
$$

k.best("GCACGACG", 3) =

