Parallel connection:

\[x(t) \rightarrow h_1(t) \rightarrow y_1(t) \]

\[h(t) = h_1(t) + h_2(t) \]

When

\[y(t) = h(t) \ast x(t) \]

Distribution property of convolution:

CT:

\[x(t) \ast h_1(t) + x(t) \ast h_2(t) = x(t) \ast (h_1(t) + h_2(t)) \]

RT:

\[x[\text{En}] \ast h[\text{En}] + x[\text{En}] \ast h_2[\text{En}] = x[\text{En}] \ast (h_1[\text{En}] + h_2[\text{En}]) \]

Cascade connection:

\[x(t) \rightarrow h_1(t) \rightarrow Z(t) \rightarrow h_2(t) \rightarrow y(t) \]

\[x(t) \rightarrow h_1(t) \ast h_2(t) \rightarrow y(t) \]

\[h(t) \]
\[z(t) = x(t) * h_1(t) = \int_{-\infty}^{\infty} x(u) h_1(t-u) \, du \]

\[y(t) = z(t) * h_2(t) = \int_{-\infty}^{\infty} z(\tau) h_2(t-\tau) \, d\tau \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(u) h_1(t-u) h_2(t-\tau) \, du \, d\tau \]

let \(u = \tau - u \), \(du = d\tau \) for fixed \(u \), then

\[y(t) = \int_{-\infty}^{\infty} x(u) \left(\int_{-\infty}^{\infty} h_1(u) h_2(t-u-v) \, dv \right) \, du \]

\[= \int_{-\infty}^{\infty} x(u) \left(h_1(u) h_2(t-u) \right) \, du \]

\[= \int_{-\infty}^{\infty} x(u) \left[h(t-u) \right] \, du \]

\[= x(t) * h(t) \]

where \(h(t) = h_1(t) * h_2(t) \)
Associative property:

\[x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t) = \]

Same for DT signals.

Commutative property:

\[h_1(t) * h_2(t) = h_2(t) * h_1(t) \]

Ex:

\[h_1[n] = u[n] \]
\[h_2[n] = u[n+2] - u[n] \]
\[h_3[n] = s[n-2] \]
\[h_4[n] = a^n u[n] \]

What is the overall \(h[n] \)?
\[h[n] = (h_1[n] + h_2[n]) * h_3[n] + h_4[n] \]
\[= u[n+2] * s[n-2] + \alpha u[n] \]
\[= u[n] + \alpha u[n] \]
\[= (1 + \alpha^n) u[n] \]

Ex: problem 2.03. An interconnection of LTI systems is depicted in the Figure below: \(h_1[n] = \left(\frac{1}{2} \right)^n u[n+2] \), \(h_2[n] = s[n] \), \(h_3[n] = u[n-1] \).

Find the impulse response of the overall system.

\[h[n] = h_1[n] * (h_2[n] + h_3[n]) \]
\[= \left(\frac{1}{2} \right)^n u[n+2] * (s[n] + u[n-1]) \]
\[= \left(\frac{1}{2} \right)^n u[n+2] + \left(\frac{1}{2} \right)^n u[n+2] * u[n-1] \]
Now,
\[
\left(\frac{1}{2} \right)^n u[n+2] \ast u[n-1] = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2} \right)^k u[k+2] u[n-1-k]
\]

Remember:
\[
\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}
\]

\[
= \sum_{k=-\infty}^{n-1} \left(\frac{1}{2} \right)^k = \sum_{k=0}^{n-1} \left(\frac{1}{2} \right)^k + \left(\frac{1}{2} \right)^{-2} + \left(\frac{1}{2} \right)^{-1}
\]

\[
\Rightarrow n \geq -1
\]

\[
h[n] = \left(\frac{1}{2} \right)^n u[n+2] + \left[8 - \frac{1}{2} \right] u[n+1]
\]

Here is the graphical method:

\[
\begin{align*}
&\text{u}[n+2] \\
&\text{u}[n-1] \\
&\text{u}[-k-1] \\
&\text{u}[k-1]
\end{align*}
\]
\[v \leq -1 + n \]

\[-1 + n \leq -2 \]

\[n \leq -1 \]
LT1 system properties and impulse response.

- Stability (BIBO)
- Memory
- Causality
- Linearity \(\Rightarrow \) LTI
- Time-invariance

For an LTI system:

\[h(t) \quad \text{completely determine} \quad h[n] \xrightarrow{} \]

Thus, stability, memory, causality are related to \(h(t) \) and \(h[n] \).
a) For a given LTI system, if it is memoryless

Then memoryless \iff \quad h[k] = c \delta[k]

h[n] = h[n] \ast x[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k]

(\Rightarrow) \quad h[0] = 0 \quad \text{for } \forall n \neq 0

\Rightarrow c \delta[n]