Reinforcement Learning cont.

CS434
Refresh Your Memory...

- So far, we assumed that the agent executes a fixed policy π
- The goal is to evaluate how good π is, based on some sequence of trials performed by the agent
Passive Learning

• Methods:
 – ADP: learn the transition model T and the reward function R, then do *policy evaluation* to learn $U_\pi(s)$ – few updates, but each update is expensive ($O(n^3)$)
 – TD learning: maintain a running average of the state utilities by doing *online mean estimation* – cheap updates but needs more updates than ADP
Goal of active learning

• Let’s suppose we still have access to some sequence of trials performed by the agent
• We can further take any action we want in the world and observe its outcome
• The goal is to learn an optimal policy
Active Reinforcement Learning Agents

We will describe two types of Active Reinforcement Learning agents:

- Active ADP agent
- Q-learner (based on TD algorithm)
Active ADP Agent
(Model-based)

• Using the data from its trials, the agent learns a transition model T and a reward function R

• With $T(s,a,s')$ and $R(s)$, it has an estimate of the underlying MDP

• It can compute the optimal policy by solving the Bellman equations using value iteration or policy iteration

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s,a,s')U(s')$$

$$\pi(s) = \arg \max_{a} \sum_{s'} T(s,a,s')U(s')$$
Active ADP Agent

• Now that we’ve got a policy that is optimal based on our current understanding of the world, what should we do?

• Greedy agent: an agent that executes the optimal policy for the learned model at each time step

• Let’s see what happens in the maze world
The Greedy Agent

The agent finds the lower route to get to the goal state but never finds the optimal upper route. The agent is stubborn and doesn’t change so it doesn’t learn the true utilities or the true optimal policy.
What happened?

• How can choosing an optimal action lead to suboptimal results?
• The learned model is not the same as the true environment
• In fact, the set of trials observed by the agent was insufficient to build a good model of the environment

How can we address this issue?

We need more training experience ...
Exploitation vs Exploration

• Actions are always taken for one of the two following purposes:
 – Exploitation: Execute the current optimal policy to get high payoff
 – Exploration: Try new sequences of (possibly random) actions to improve the agent’s knowledge of the environment even though current model doesn’t believe they have high payoff

• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you don’t put that knowledge into practice
Optimal Exploration Strategy?

• What is the optimal exploration strategy?
 – Greedy?
 – Random?
 – Mixed? (Sometimes use greedy sometimes use random)

• It turns out that the optimal exploration strategy has been studied in-depth in the N-armed bandit problem
N-arme Bandits

- We have N slot machines, each can yield $1 with some probability (different for each machine)

- Which lever should we pull?
 - The one that has paid off best? - exploit
 - One that has never been tried? - explore

- Explore is risky, with uncertain payoffs

- But failure to explore at all may result in never finding the best actions

- Bottom line
 - The optimal course of action is not obvious
 - In fact, an exact solution that maximize expected overall return is usually intractable
GLIE

• Fortunately it is possible to come up with a **reasonable** exploration method that eventually leads to optimal behavior by the agent
• Any such exploration method needs to be **Greedy** in the Limit of Infinite Exploration (GLIE)
• Properties:
 – Must try each action in each state an unbounded number of times so that it doesn’t miss any optimal actions
 – Must eventually become greedy
Examples of GLIE schemes

- \(\varepsilon \)-greedy:
 - Choose a random action \(1/t \) fraction of the time
 - Choose the optimal action otherwise

- Active \(\varepsilon \)-greedy ADP agent
 1. Start with initial \(T \) and \(R \) learned from the original sequence of trials
 2. Compute the utilities of states \(U(s) \) using value iteration
 3. Take action use the \(\varepsilon \)-greedy exploitation-exploration strategy
 4. Update \(T \) and \(R \), go to 2

This converges to the optimal policy but very slowly
A Smarter GLIE approach

• Favor actions the agent has not tried very often, avoid actions believed to be of low utility

• We can achieve this by altering bellman equation to use $U^+(s)$, which is an *optimistic estimate* of the utility of the state s
Exploration Function

Originally: \[U(s) = R(s) + \gamma \max_a \sum_{s'} T(s, a, s')U(s') \]

\[U^+(s) = R(s) + \gamma \max_a f\left(\sum_{s'} T(s, a, s')U^+(s'), N(a, s) \right) \]

- \(N(a, s) \) = number of times action \(a \) tried in state \(s \)
- \(U^+(s) \) = optimistic estimate of the utility of state \(s \)

Exploration function \(f(u, n) \):

\[f(u, n) = \begin{cases} R^+ & \text{if } n < N_e \\ u & \text{otherwise} \end{cases} \]

- Trades off greedy (prefer high utilities \(u \)) against curiosity (prefer novel state-action pairs)
- \(R^+ \): optimistic estimate of the best possible reward
- If \(a \) hasn’t been tried often in \(s \), assume it will somehow lead to gold – optimistic
- \(N_e \) is a limit on the number of tries for a state-action pair
Active ADP Agent with Exploration Functions

1. Start with initial T and R learned from the original sequence of trials
2. Compute U^+ using the Exploration Function
3. Take the greedy action based on U^+
4. Update estimated model and goto 2

Fast convergence to near optimal policy in practice!

A corresponding TD agent can be constructed as well
• The TD updates remain the same (now using exploration function)
• Converges to optimal policy
• Converge slower than active ADP

$$U(s) = U(s) + \alpha (R(s) + \gamma U(s') - U(s))$$
Q-learning

Previously, we needed to store utility values for a state i.e.

• $U(s) = \text{utility of state } s = \text{expected sum of future rewards}$

Now, we will consider Q-values, which are defined as:

• $Q(a,s) = \text{value of taking action } a \text{ at state } s$, i.e., the maximum expected future rewards after taking action a at state s
Q-learning

• Now, instead of storing a table of $U(s)$ values, we store a table of $Q(a, s)$ values

• Note the relationship:

\[U(s) = \max_a Q(a, s) \]

• Note that if you estimate $Q(a, s)$ for all a and s, we can simply choose the action that maximize Q, without using the model
Q-learning

At equilibrium when the Q-values are correct, we can write the constraint equation:

\[Q(a, s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s') \]

- **Reward at state \(s \)**
- **Expected value for action-state pair \((a, s) \)**
- **Expected value averaged over all possible states \(s' \) that can be reached from \(s \) after executing action \(a \)**
At equilibrium when the Q-values are correct, we can write the constraint equation:

\[
Q(a, s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s')
\]

\[
Q(a, s) = R(s) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q(a', s')
\]

Note we still need to learn \(T(s,a,s')\)!
Can we learn it in a model free way?
Q-learning

At equilibrium when the Q-values are correct, we can write the constraint equation:

\[Q(a, s) = R(s) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q(a', s') \]

- **Reward at state** \(s \)
- **Best expected value for action-state pair** \((a, s) \)
- **Best value averaged over all possible states** \(s' \) that can be reached from \(s \) after executing action \(a \)
- **Best value at the next state** = \(\max \) over all actions in state \(s' \)
Q-learning Without a Model

- We can use a temporal differencing approach which is model-free
- After moving from state s to state s' using action a:

$$Q(a, s) \leftarrow Q(a, s) + \alpha(R(s) + \gamma \max_{a'} Q(a', s') - Q(a, s))$$

New estimate of $Q(a,s)$	Learning rate $0 < \alpha < 1$
Old estimate of $Q(a,s)$

Difference between old estimate $Q(a,s)$ and the new noisy sample after taking action a
Q-learning: Estimating the Policy

Q-Update: After moving from state s to state s' using action a:

$$Q(a, s) \leftarrow Q(a, s) + \alpha (R(s) + \gamma \max_{a'} Q(a', s') - Q(a, s))$$

Policy estimation:

$$\pi(s) = \max_a Q(a, s)$$

Note that $T(s, a, s')$ does not appear anywhere! This is a model-free learning algorithm.
Q-learning Convergence

• Guaranteed to converge to an optimal policy [Watkins]
• Very general procedure (because it’s model free)
• Converges slower than ADP agent (because it is completely model free and it doesn’t enforce consistency among values through the model)
Q-learning: Exploration Strategies

• How to choose the next action while we’re learning?
 – Random
 – Greedy
 – \(\epsilon\)-Greedy
 – Boltzmann: Choose the next action with probability: (\(T\) is a temperature parameter that is decayed over time)

\[
\frac{Q(a, s)}{e^\frac{T}{\epsilon}}
\]
Model-based/Model-free

• Two broad categories of reinforcement learning algorithms:
 1. Model-based eg. ADP
 2. Model-free eg. TD, Q-learning

• Which is better?
 – Model-based approach is a knowledge-based approach (ie. model represents known aspects of the environment)
 – Book claims that as environment becomes more complex, a knowledge-based approach is better
What You Should Know

- Exploration vs exploitation
- GLIE schemes
- Difference between model-free and model-based methods
- Q-learning