Frequent pattern mining: association rules

CS434
What Is Frequent Pattern Mining?

- **Frequent pattern**: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- **Motivation**: Finding inherent regularities in data
 - What products were often purchased together? — Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- **Broad applications**
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis
 - DNA sequence analysis
Association rules

Data: Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Example of Association Rules

\{\text{Diaper}\} \rightarrow \{\text{Beer}\},
\{\text{Milk, Bread}\} \rightarrow \{\text{Eggs, Coke}\},
\{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\},

Implication means \textbf{co-occurrence, not causality}!

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.
Definition: Frequent Itemset

- **Itemset**
 - A collection of one or more items
 - Example: \{Milk, Bread, Diaper\}
 - \(k\)-itemset
 - An itemset that contains \(k\) items

- **Support count (\(\sigma\))**
 - Frequency of occurrence of an itemset
 - E.g. \(\sigma(\{\text{Milk, Bread, Diaper}\}) = 2\)

- **Support**
 - Fraction of transactions that contain an itemset
 - E.g. \(s(\{\text{Milk, Bread, Diaper}\}) = 2/5\)

- **Frequent Itemset**
 - An itemset whose support is greater than or equal to a \textit{minsup} threshold

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form \(X \rightarrow Y \), where \(X \) and \(Y \) are itemsets
 - Example:
 \[\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} \]

- **Rule Evaluation Metrics**
 - Support (\(s \))
 - Fraction of transactions that contain both \(X \) and \(Y \): \(P(X \land Y) \)
 - Confidence (\(c \))
 - Measures how often items in \(Y \) appear in transactions that contain \(X \): \(P(Y|X) \)

\[
\begin{align*}
\text{TID} & \quad \text{Items} \\
1 & \quad \text{Bread, Milk} \\
2 & \quad \text{Bread, Diaper, Beer, Eggs} \\
3 & \quad \text{Milk, Diaper, Beer, Coke} \\
4 & \quad \text{Bread, Milk, Diaper, Beer} \\
5 & \quad \text{Bread, Milk, Diaper, Coke}
\end{align*}
\]

Example:

\[\{\text{Milk, Diaper}\} \Rightarrow \text{Beer} \]

\[
\begin{align*}
 s &= \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4 \\
 c &= \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67
\end{align*}
\]
Problem definition: Association Rules Mining

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, C</td>
</tr>
<tr>
<td>20</td>
<td>A, C</td>
</tr>
<tr>
<td>30</td>
<td>A, D</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

• **Inputs:**
 - Itemset $X = \{x_1, ..., x_k\}$,
 - thresholds: min_sup, min_conf

• **Output:**
 - All the rules $X \Rightarrow Y$ having:
 - support $(P(X^Y)) \geq \text{min}_\text{sup}$
 - confidence $(P(Y|X)) \geq \text{min}_\text{conf}$

Let $\text{min}_\text{sup} = 50\%$, $\text{min}_\text{conf} = 50\%$:

- $A \Rightarrow C$ (50%, 66.7%)
- $C \Rightarrow A$ (50%, 100%)
Brute-force solution

• List all possible association rules
• Compute the support and confidence for each rule
• Prune rules that fail the min_{sup} and min_{conf} thresholds

⇒ Computationally prohibitive!
Mining Association Rules

Example of Rules:

- \{\text{Milk}, \text{Diaper}\} \rightarrow \{\text{Beer}\} (s=0.4, c=0.67)
- \{\text{Milk}, \text{Beer}\} \rightarrow \{\text{Diaper}\} (s=0.4, c=1.0)
- \{\text{Diaper}, \text{Beer}\} \rightarrow \{\text{Milk}\} (s=0.4, c=0.67)
- \{\text{Beer}\} \rightarrow \{\text{Milk}, \text{Diaper}\} (s=0.4, c=0.67)
- \{\text{Diaper}\} \rightarrow \{\text{Milk}, \text{Beer}\} (s=0.4, c=0.5)
- \{\text{Milk}\} \rightarrow \{\text{Diaper}, \text{Beer}\} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset: \{\text{Milk, Diaper, Beer}\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements
- We can first find all frequent itemsets that satisfy the support requirement
Mining Association Rules

• Two-step approach:
 1. Frequent Itemset Generation
 – Generate all itemsets whose support \(\geq \) minsup
 2. Rule Generation
 – Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

• Frequent itemset generation is still computationally expensive
Given d items, there are 2^d possible candidate itemsets
Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

- Match each transaction against every candidate
- Complexity $\sim O(NMw) \Rightarrow$ Expensive since $M = 2^d$!!!
Reducing Number of Candidates

• Apriori principle:
 – If an itemset is frequent, then all of its subsets must also be frequent
 – If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
 – i.e., every transaction having \{beer, diaper, nuts\} also contains \{beer, diaper\}

• Apriori principle holds due to the following property of the support measure:

\[\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y) \]

 – Support of an itemset never exceeds the support of its subsets
 – This is known as the anti-monotone property of support
Illustrating Apriori Principle

Found to be Infrequent

Pruned supersets
Illustrating Apriori Principle

Items (1-itemsets)

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Pairs (2-itemsets)

- \{Bread, Milk\}: 3
- \{Bread, Beer\}: 2
- \{Bread, Diaper\}: 3
- \{Milk, Beer\}: 2
- \{Milk, Diaper\}: 3
- \{Beer, Diaper\}: 3

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

- \{Bread, Milk, Diaper\}: 3

Min Support count = 3

If every subset is considered,
\[C_1^6 + C_2^6 + C_3^6 = 41 \]

With support-based pruning,
\[6 + 6 + 1 = 13 \]
The Apriori Algorithm

• Method:

 – Let \(k = 1 \)
 – Generate frequent itemsets of length 1
 – Repeat until no new frequent itemsets are identified
 • Generate length \((k+1)\) candidate itemsets from length \(k\) frequent itemsets
 • Prune candidate itemsets containing subsets of length \(k\) that are infrequent
 • Count the support of each candidate by scanning the DB
 • Eliminate candidates that are infrequent, leaving only those that are frequent
The Apriori Algorithm

- **Pseudo-code:**

 C_k: Candidate itemset of size k

 L_k: frequent itemset of size k

 $L_1 = \{\text{frequent items}\}$;

 for $(k = 1; L_k \neq \emptyset; k++)$ do begin
 $C_{k+1} = \text{candidates generated from } L_k$;
 for each transaction t in database do
 increment the count of all candidates in C_{k+1}
 that are contained in t

 $L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}$
 end

 return $\bigcup_k L_k$;
How to Generate Candidates?

• Suppose the items in L_k are listed in an order (e.g., alphabetic ordering)

• Step 1: self-joining L_k
 For all itemsets p and q in L_k such that

 $p.item_i = q.item_i$ for $i = 1, 2, ..., k-1$ and $p.item_k < q.item_k$

 Add to C_{k+1}

 $p.item_1, p.item_2, ..., p.item_k, q.item_k$

• Step 2: pruning
 For all itemsets c in C_{k+1} do

 For all (k)-subsets s of c do

 if $(s$ is not in $L_k)$ then delete c from C_{k+1}
Important Details of Apriori

Self-joining rule:
1. we join two itemsets if and only if they only differ by their last item
2. When joining, the items are always ranked based on a fixed ordering of the items (e.g., alphabetic ordering)

• Example of Candidate-generation
 – \(L_3 = \{abc, abd, acd, ace, bcd\} \)
 – Self-joining: \(L_3 * L_3 \)
 • \(abcd \) from \(abc \) and \(abd \)
 • \(acde \) from \(acd \) and \(ace \)
 – Pruning:
 • \(acde \) is removed because \(ade \) is not in \(L_3 \)
 – \(C_4 = \{abcd\} \)

Why not abd, and acd -> abcd?
Why should this work?

• How can we be sure we are not missing any possible itemset?
• This can be seen by proving that for every possible frequent k+1-itemset, it will be included using this self-joining process

Proof
For any k +1 item set S (with items ranked), it will be included by joining the following two subsets:
1. \(S_k = \{ \text{the first } k \text{ items of } S \} \)
2. \(S'_k = S \) with the k-th item removed

Clearly \(S_k \) and \(S'_k \) are frequent, and differ by only the last item. So they must satisfy the self-join condition and \(S_k \cap S'_k = S \).
The Apriori Algorithm—An Example

Sup\textsubscript{min} = \frac{2}{4}

Database TDB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
</tr>
</tbody>
</table>

1st scan

\(C_1\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

\(L_1\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

2nd scan

\(C_2\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

\(L_2\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

3rd scan

\(C_3\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>?</td>
</tr>
</tbody>
</table>

\(L_3\)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>
Reducing Number of Comparisons

- Counting for each candidate:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Mining Association Rules

• Two-step approach:
 1. Frequent Itemset Generation
 – Generate all itemsets whose support \geq minsup
 2. Rule Generation
 – Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
 – Enumerate all possible rules from the frequent itemset and out these of high confidence
Frequent-Pattern Mining: Summary

• Frequent pattern mining—an important task in data mining
• Scalable frequent pattern mining methods
 – Apriori (Candidate generation & test)
 ▪ The Apriori property has also been used in mining other type of patterns such as sequential and structured patterns
▪ Problem: frequent patterns are not necessarily interesting patterns
 ▪ Bread -> milk is not really interesting although it has high support and confidence
 ▪ Many other measures of interestingness exist to address this problem
 ▪ Such as “unexpectedness”
What you need to know

• What are support and confidence of a rule?
• The apriori property
• How to find frequent itemset using the apriori property
 – Candidate generation
 – Pruning
 – Why are they correct
• How to produce association rules based on frequent itemset