Outline

• Matching

• Hungarian algorithm

• DTW
Matching: Formulation 4

Given two sets of elements to be matched

\[V = \{v_1, v_2, \ldots, v_N\}, \text{ and } V' = \{v'_1, v'_2, \ldots, v'_M\} \]

Find the mapping

\[f : U \rightarrow U', \text{ where } U \subseteq V \text{ and } U' \subseteq V' \]

\[f := \{(v, v') : v \in U \subseteq V, v' \in U' \subseteq V'\} \]

Which maximizes the objective function

\[\hat{f} = \max_f \left[\sum_{(u, u') \in f} \psi(u, u') \right] \]
Linearization

Linearization by introducing an indicator matrix

\[X = \begin{bmatrix}
0 & 0 & 1 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & & \ddots & \& \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 & 0
\end{bmatrix}_{N \times M} \]

\[x(v, v') = 1, \text{ if } (v_i, v'_i) \text{ matched pair} \]

\[x(v, v') = 0, \text{ if } (v_i, v'_i) \text{ unmatched pair} \]
Linearization

\[\Psi = \begin{bmatrix}
\psi_{11}' & \psi_{12}' & \psi_{13}' & \cdots & \psi_{1M} \\
\psi_{21}' & \psi_{22}' & \psi_{23}' & \cdots & \psi_{2M} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}_{N \times M} \]

\[\sum_{(v,v') \in f} \psi(v, v') = \sum_{(v,v')} x(v, v') \psi(v, v') = \text{tr}(\Psi^T X) \]
Relaxation

\[
\max_X \text{tr}(\Psi^T X)
\]

subject to:

\[
\forall u \in V, \forall u' \in V', \quad x_{uu'} \in [0, 1]
\]

\[
\forall u, \quad \sum_{u'} x_{uu'} = 1
\]

\[
\forall u', \quad \sum_u x_{uu'} = 1
\]

what is the meaning of this constraint?
Relaxation

$$\max_X \text{tr}(\Psi^T X)$$

subject to:

$$\forall u \in V, \forall u' \in V', x_{uu'} \in [0, 1]$$

$$\forall u, \sum_{u'} x_{uu'} = 1$$

$$\forall u', \sum_u x_{uu'} = 1$$

one-to-one matching
Linear Assignment Problem

$$\max_X \tr(\Psi^T X)$$

subject to:

$$\forall u \in V, \forall u' \in V', x_{uu'} \in [0, 1]$$

$$\forall u, \sum_{u'} x_{uu'} = 1$$

$$\forall u', \sum_u x_{uu'} = 1$$

optimal solution exists for the balanced problem when $|V| = |V'|$
Linear Assignment Problem

\[
\max_X \text{tr}(\Psi^T X)
\]

subject to:

\[
\forall u \in V, \forall u' \in V', \ x_{uu'} \in [0, 1]
\]

\[
\forall u, \sum_{u'} x_{uu'} = 1
\]

\[
\forall u', \sum_u x_{uu'} = 1
\]

The Hungarian algorithm may give false solutions for unbalanced problems when |V| \neq |V'|
The Hungarian Algorithm

\[A = -\Psi \]

\[
\min_X \text{tr}(A^T X)
\]

subject to:

\[\forall u \in V, \forall u' \in V', \ x_{uu'} \in [0, 1] \]

\[\forall u, \sum_{u'} x_{uu'} = 1 \]

\[\forall u', \sum_u x_{uu'} = 1 \]
The Hungarian Algorithm

1. Find the min element along each row (column) of A, and subtract it from all elements in the respective rows (columns). Replace A with the resulting matrix.

2. Cross out the minimum number of rows and columns in A to cover all zero elements of A.

3. If min(N,M) rows and columns of A are crossed out, then go to step 5.

4. Otherwise, find the minimal entry of A that is not crossed out. Add this entry to all elements that are doubly crossed out (by both a horizontal and vertical line), and subtract it from all entries of A that are not crossed out. Return to step 2 with the new matrix.

5. Solutions are zero elements of A. Go first for the zero element which is unique in its row and column. Then, delete that row and column from A. Repeat until you delete all rows or columns from A.
Example -- The Hungarian Algorithm

given a cost matrix

\[
A = \begin{bmatrix}
14 & 5 & 8 & 7 \\
2 & 12 & 6 & 5 \\
7 & 8 & 3 & 9 \\
2 & 4 & 6 & 10
\end{bmatrix}
\]

step 1: find minimums and subtract

\[
A = \begin{bmatrix}
9 & 0 & 3 & 2 \\
0 & 10 & 4 & 3 \\
4 & 5 & 0 & 6 \\
0 & 2 & 4 & 8
\end{bmatrix}
\]
go for the unique solution first

step 5: \[A = \begin{bmatrix} 10 & 0 & 3 & 0 \\ 0 & 9 & 3 & 0 \\ 0 & 1 & 3 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 5 & 5 & 0 & 4 \\ 0 & 1 & 3 & 5 \end{bmatrix} \]

\[x_{33} = 1 \]
Example -- The Hungarian Algorithm -- Solution

go for the unique solution first

step 5: \(A = \begin{bmatrix}
10 & 0 & 3 & 0 \\
0 & 9 & 3 & 0 \\
5 & 5 & 0 & 4 \\
\rightarrow & 0 & 1 & 3 & 5
\end{bmatrix} \)

\[x_{33} = 1 \]

\[x_{41} = 1 \]
Example -- The Hungarian Algorithm -- Solution

Go for the unique solution first

\[A = \begin{bmatrix}
10 & 0 & 3 & 0 \\
0 & 9 & 3 & 0 \\
5 & 5 & 0 & 4 \\
0 & 1 & 3 & 5
\end{bmatrix} \]

Step 5:

\[x_{33} = 1 \]

\[x_{41} = 1 \]

\[x_{12} = 1 \]
Example -- The Hungarian Algorithm -- Solution

go for the unique solution first

step 5: \[A = \begin{bmatrix} 10 & 0 & 3 & 0 \\
0 & 9 & 3 & 0 \\
5 & 5 & 0 & 4 \\
0 & 1 & 3 & 5 \end{bmatrix} \]

\[x_{33} = 1 \]

\[x_{41} = 1 \]

\[x_{12} = 1 \]

\[x_{24} = 1 \]
Dynamic Time Warping
Alignment of Two Sequences of Points

arrows show the points of alignment
Alignment of Two Sequences of Points

Cost matrix
Building a Cost Matrix of Pairs of Points

\[c_{ij} = \| x_i - y_j \|, \quad i = 1: N, \quad j = 1: M \]

goal: find the min-cost path
Building the Accumulated Cost Matrix

Cost matrix \(c_{ij} \) \(\rightarrow \) Accumulated cost matrix \(D(i, j) \)

- \(c_{ij} \): element of the cost matrix
- \(D(i, j) \): element of the accumulated cost matrix
Building the Accumulated Cost Matrix

1. First row:

\[D(1, j) = \sum_{k=1}^{j} c_{1k}, \quad j = 1 : M \]
Building the Accumulated Cost Matrix

1. First row:
 \[D(1, j) = \sum_{k=1}^{j} c_{1k}, \quad j = 1 : M \]

2. First column:
 \[D(i, 1) = \sum_{k=1}^{i} c_{k1}, \quad i = 1 : N \]
3. Compute:

\[
D(i, j) = c_{ij} + \min\{D(i - 1, j - 1), D(i, j - 1), D(i - 1, j)\}
\]
Building the Accumulated Cost Matrix

4. Find min in the last row, and then back-track the path
Building the Accumulated Cost Matrix

4. Find min in the last row, and then back-track the path
Dynamic Time Warping

```c
int DTWDistance(char s[1..n], char t[1..m]) {
    int DTW[0..n, 0..m]
    int i, j, cost

    for i := 1 to m
        DTW[0, i] := infinity;

    for i := 1 to n
        DTW[i, 0] := infinity;

    DTW[0, 0] := 0;

    for i := 1 to n
        for j := 1 to m

            cost := d(s[i], t[j]);

            DTW[i, j] := cost + minimum(DTW[i-1, j], // insertion
                                          DTW[i, j-1],  // deletion
                                          DTW[i-1, j-1]); // match

    return DTW[n, m];
}
```
Cyclic Dynamic Time Warping -- Region Boundaries

DTW cannot be directly used for cyclic sequences

different CDTW algorithms