CS 440: Database Management Systems
Inference Rules

- IR1 (reflexive rule): If $X \supseteq Y$, then $X \rightarrow Y$.
- IR2 (augmentation rule): $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
- IR3 (transitive rule): $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- IR4 (projective rule): $\{X \rightarrow YZ\} \models X \rightarrow Y$
- IR5 (additive rule): $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
- IR6 (pseudotransitive rule): $\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$
Closure

• Determining X^+, the Closure of X under F
 - Algorithm 16.1

 $X^+ := X$;

 Repeat

 OldX^+ := X^+;

 For each FD $Y \rightarrow Z$ in F do

 If $X^+ \supseteq Y$ then $X^+ := X^+ \cup Z$;

 Until ($X^+ = \text{Old}X^+$);

 - Example

$R = \{\text{SSN, EName, PNumber, Pname, Plocation, Hours}\}$

$F = \{\text{SSN} \rightarrow \text{EName }, \text{PNumber} \rightarrow \{\text{PName, Plocation}\}, \{\text{SSN, PNumber}\} \rightarrow \text{Hours}\}$
Equivalence

- Definition – A set of functional dependencies F is said to cover another set of functional dependencies E if every FD in E is also in F^+; that is, if every dependency in E can be inferred from F; alternatively, we can say that E is covered by F.

- Definition – Two sets of functional dependencies E and F are equivalent if $E^+ = F^+$. Therefore, equivalence means that every FD in E can be inferred from F, and every FD in F can be inferred from E; that is, E is equivalent to F if both the conditions – E covers F and F covers E – hold.
Example

- F={A→C, AC→D, E→AD, E→H}
- G={A→CD, E→AH}
- Show these two sets are equivalent.
Minimal Cover

- It is always possible to find a dependency-preserving decomposition \(D \) with respect to \(F \) such that each \(R_i \) in \(D \) is in 3NF.

- Algorithm:
 - Need to be able to find minimal cover of a set of functional dependencies
Minimal Cover

- Finding a minimal cover F for a set of functional dependencies E
 - Step 1: $F := E$
 - Step 2: replace each $X \rightarrow \{A_1, A_2, \ldots, A_n\}$ by $\{X \rightarrow A_1, X \rightarrow A_2, \ldots, X \rightarrow A_n\}$
 - Step 3: For each function dependency $X \rightarrow A$ in F
 - For each attribute B that is an element of X
 - If $\{\{F - \{X \rightarrow A\}\} \cup \{(X - \{B\}) \rightarrow A\}\}^+ = F^+$
 replace $X \rightarrow A$ with $(X - \{B\}) \rightarrow A$
 - Step 4: For each remaining FD in F
 - If $\{F - \{X \rightarrow A\}\}^+ = F^+$ then remove $X \rightarrow A$
Minimal Cover

- Example:
 \[E = \{ B \rightarrow A, D \rightarrow A, AB \rightarrow D \} \]

- Step 2: no action

- Step 3:
 \[\{ B \rightarrow A, D \rightarrow A, AB \rightarrow D \}^+ \]
 \[= \{ B \rightarrow A, D \rightarrow A, B \rightarrow D \}^+ \]
 \[= \{ D \rightarrow A, B \rightarrow D \}^+ \]

- The minimal cover of \(E \) is \{D->A, B->D\}.
Find a Key K for R, given a set F of FDs.

- Set $K := R$.
- For each attribute A in K
 - Compute $(K-A)^+$ with respect to F;
 - If $(K-A)^+$ contains all the attributes in R, then set $K := K \setminus \{A\}$
Key/Minimal Set Cover...

- \(R = \{A, B, C, D, E, F, G, H, I, J\} \)
- \(F = \{ \{A, B\} \rightarrow \{C\}, \{A\} \rightarrow \{D, E\}, \{B\} \rightarrow \{F\}, \{F\} \rightarrow \{G, H\}, \{D\} \rightarrow \{I, J\} \} \)
- Determine a key for \(R \).
- Find the minimum set of dependencies \(G \) that is equivalent to \(F \).
Another example…

- $R = \{A, B, C, D, E, F, G, H, I, J\}$
- $G = \{\{A, B\} \rightarrow \{C\}, \{B, D\} \rightarrow \{E, F\}, \{A, D\} \rightarrow \{G, H\}, \{A\} \rightarrow \{I\}, \{H\} \rightarrow \{J\}\}$.

- Determine a key for R.
- Find the minimum set of dependencies G that is equivalent to F.