CS 161
Intro to CS I

Repetitive Execution
Chap. 2.3
Multiple Decisions

• What if I want to make these same decisions for the whole year?
 If it is sunny today
 then I’ll go to the beach
 if it is windy at the beach
 then I’ll fly a kite
 else if it is not windy at the beach
 then I’ll walk on the shore
 Else if it is raining today
 then I’ll stay inside and read a book
 Else if it is snowing
 then I’ll go to the mountains to ski

• Repeat the process for 365 days
How do we do this?

• Repetition: for loops
 – Semantics
 • Repeat for a specific # of iterations w/ starting point, ending point, and an increment
 – Syntax
 for(x=1; x <= 365; x++) {
 <statement>;
 <statement>;
 ...
 }

The for Loop

```
for(x=1; x <= 365; x++) {
  <statement>;
  <statement>;
  ...

}
```

Starting point:
Initialization
The for Loop

for(x=1; x <= 365; x++) {
 <statement>;
 <statement>;
 ...
}

Ending point: Continuation Test
The for Loop

for(x=1; x <= 365; x++) {
 <statement>;
 <statement>;
 ...
}

• What do you notice about order?
The for Loop

```c
for(x=1; x <= 365; x++) {
    <statement>;
    <statement>;
    ...
}
```

- Same as `x = x+1`
- What about `x = x + 2`?
The for Loop

for(x=1; x <= 365; x++) {
 <statement>;
 <statement>;
 ...
}

• What do you notice about order?
The for Loop

for(x=1; x <= 365; x++) {
 <statement>;
 <statement>;
 ...
}

Test is False: Execution after loop
The for Loop Examples

```
for(x=-100; x <= 100; x++)
    cout << "hello world\n";
for(x=2+2; x <= 17*3; x++)
    cout << "hello world\n";
for(x=0; x <= 100; x++)
    cout << "hello world\n";
for(x=0; x < 100; x++)
    cout << "hello world\n";
for(x=-100; x <= -1; x++)
    cout << "hello world\n";
```
The for Loop Examples

for(x=1; x <= 1; x++) {
 cout << “hello world
”;
}

for(x=1; x < 1; x++) {
 cout << “hello world
”;
}

• Why is it better to use curly braces?
The for Loop Pattern

for(<variable> = n; <variable> <= p; <variable>++) {
 <statement>;
 ...
}
for(<variable> = n; <variable> >= p; <variable>--) {
 <statement>;
 ...
}
Nested for Loops

```c++
for(x = 0; x < 10; x++) {
    for(y = 0; y < 10; y++) {
        cout << "hello world\n";
    }
}
```

• How many times is Hello World printed?
Reuse Variables

for(x = 0; x < 10; x++) {
 cout << “The value of x is: ” << x << endl;
}
for(x = 0; x < 10; x++) {
 cout << “The value of x is: ” << x << endl;
}
Variables with same name

```c++
int x;
for(x = 0; x < 10; x++) {
    for(x = 0; x < 10; x++) {
        cout << "The value of x is: " << x << endl;
    }
}
```

• What is the output from this nested loop?
Infinite Loops

```cpp
int x;
for(x = 0; x < 10; x++) {
    for(x = 0; x < 5; x++) {
        cout << "The value of x is: " << x << endl;
    }
}
```
Infinite Loops

```cpp
int x, y;
for(x = 0; x < 10; x++) {
    for(y = 0; y < 5; x++) {
        cout << "The value of x is: " << x << endl;
    }
}
```
Infinite Loops

```cpp
int x, y;
for (x = 0; x < 10; x++) {
    for (y = 0; x < 5; y++) {
        cout << "The value of x is: " << x << endl;
    }
}
```
Infinite Loops

```cpp
int x;
for(x = 1; x <= 10; x++) {
    cout << "The value of x is: " << --x << endl;
}
```
The while loop

for(x=1; x <= 100; x++)
 cout << "hello world\n";

VS.

int x=1;
while(x<=100) {
 cout << "hello world\n";
 x++;
}
Common Mistakes

```cpp
int x=1;
while(x<=100) {
    cout << "hello world\n";
    x++;  // What if we forget this?
}
```

What if we forget this?
The do/while loop

```cpp
int x=1;
do {
    cout << "hello world\n";
    x++;}
while(x<=100);
```

- Difference b/w while and do/while?
Infinite Loop Example...

```cpp
#include <iostream>
#include <cmath>
int i;
int main() {
    int i, x, y;
    // Just because you can, doesn't mean you should
    i = i + 1,
    x++;
    y = y + 4, pow(2, 3); if(x<2) y++;
    for(y=1, x++; ;x++, y++)
        std::cout << x << std::endl;
    return 0;
}
```

Reading/Assignments

• Assignment #2, Due Monday 1/28
• Read Ch. 3
Quiz #3

• Get into groups of 3-4.
• Discuss Assignment #2.
• Provide Pseudocode for the solution to Problem #1 and #2.