CS480
Translators

Finishing Lexical Analysis
Chap. 3
Milestones

• Milestone 1 – Make sure your Makefile works!!!
• Milestone 2
 – You can make your own design decisions
• KISS😊
Implementing Regular Expressions

• Build finite automata for all patterns
• Connect start states for NDFA
• Simplify to make DFA
• Algorithm:
 – When asked for token, start in combined state
 – Read characters, advancing state, until cannot advance further
 – If needed, push back last character(s)
 – Return token associate with last state
Finite State Automata

- A recognizer for a language is a program that takes a string x as an input and answers "yes" if x is a sentence of the language and "no" otherwise.
- One can compile any regular expression into a recognizer by constructing a generalized transition diagram called a finite automaton.
- A finite automaton can be non-deterministic or deterministic.
- Both automata are capable of recognizing regular expressions.
Transition Diagram

• Flowchart with states and edges; each edge is labeled with characters; certain subset of states are marked as “final states”
• Transition from state to state proceeds along edges according to the next input character
• Every string that ends up at a final state is accepted
• If get “stuck”, there is no transition for a given character, it is an error
$\text{relop} \rightarrow < | > | <= | >= | = | <>$
 TOKEN getRelop() {
 TOKEN retToken = new(RELOP);
 while(1) { /* repeat character processing until a return
 or failure occurs */
 switch(state) {
 case 0: c = nextChar();
 if (c == '<') state = 1;
 else if (c == '=') state = 5;
 else if (c == '>') state = 6;
 else fail(); /* lexeme is not a relop */
 break;
 case 1: ...
 ...
 case 8: retract();
 retToken.attribute = GT;
 return(retToken);
 }
 }
}
Collection of Keywords
NFA vs. DFA

- **Nondeterministic Finite Automata (NFA):**
 - ε can label edges (these edges are called ε-transitions)
 - some character can label 2 or more edges out of the same state
- **Deterministic Finite Automata (DFA):**
 - no edges are labeled with ε
 - each character can label at most one edge out of the same state
- **NFA and DFA** accepts string x if there exists a path from the start state to a final state labeled with characters in x
(a | b)*abb

Figure 3.24: A nondeterministic finite automaton

Figure 3.28: DFA accepting (a|b)*abb
Transition Tables

• For NFA, each entry is a set of states:

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0,1}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>{2}</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>{3}</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

• For DFA, each entry is a unique state:

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
NFA to DFA

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ-closure(s)</td>
<td>Set of NFA states reachable from NFA state s on ϵ-transitions alone.</td>
</tr>
<tr>
<td>ϵ-closure(T)</td>
<td>Set of NFA states reachable from some NFA state s in set T on ϵ-transitions alone; $= \cup_{s \in T} \epsilon$-closure(s).</td>
</tr>
<tr>
<td>move(T, a)</td>
<td>Set of NFA states to which there is a transition on input symbol a from some state s in T.</td>
</tr>
</tbody>
</table>

```plaintext
while ( there is an unmarked state $T$ in $Dstates$ ) {
    mark $T$;
    for ( each input symbol $a$ ) {
        $U = \epsilon$-closure(move($T$, $a$));
        if ( $U$ is not in $Dstates$ )
            add $U$ as an unmarked state to $Dstates$;
        $Dtran[T, a] = U$;
    }
}
```
Figure 3.34: NFA N for $(a|b)^*abb$

<table>
<thead>
<tr>
<th>NFA STATE</th>
<th>DFA STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0, 1, 2, 4, 7}$</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>${1, 2, 3, 4, 6, 7, 8}$</td>
<td>B</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>${1, 2, 4, 5, 6, 7}$</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>${1, 2, 4, 5, 6, 7}$</td>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>${1, 2, 4, 5, 6, 7, 9}$</td>
<td>E</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
DFA - $\text{(a | b)}^*\text{abb}$

Figure 3.36: Result of applying the subset construction to Fig. 3.34
Reading/Assignments

• Read Chap. 3.8 – 3.9