Dependency Parsing

Prashanth Mannem
mannemp@eecs.oregonstate.edu
Syntax

- Study of the way sentences are constructed from smaller units
- Formal systems that enable this
 - Phrase Structure Grammar
 - Dependency Grammar
- More
 - Tree Adjoining Grammar (TAG),
 - Categorical Grammar
Phrase Structure Grammar

- Constituents as building blocks
- Phrase structure rules to form constituents
 - Recursive
 - Lexicalized

[S [NP Sue/NNP] [VP walked/VBD [PP into/P [NP the/DT store/NN]]]]
Dependency Grammar

• The idea of dependency structure goes back a long way
 • To Pāṇini’s grammar (c. 5th century BCE)

• Constituency is a new invention
 • 20th century

• Modern work often linked to work of L. Tesniere (1959)
 • Dominant approach in “East” (Eastern bloc/East Asia)

• Among the earliest kinds of parsers in NLP, even in US:
 • David Hays, one of the founders of computational linguistics, built early (first?) dependency parser (Hays 1962)
Dependency Grammar

- Dependency tree of a sentence is a set of modifier-modified relations/dependencies
- Represented by a directed arc modifier ← modified
- NP phrases

The dog

The huge dog

The huge lovable dog

dog

dog

dog

the huge

the huge lovable
Dependency Grammar

dog with a very loud bark

the huge lovable
very loud bark with a very lovable huge loud bark
very loud bark with a dog

the huge lovable

loud very bark

Dependency Grammar
Dependency Grammar

dog --with-- bark

the huge lovable

a loud

very
very loud bark with

the huge lovable

a loud very
very loud bark with the huge lovable dog

a loud very
the huge lovable dog with a very loud bark
Dependency Grammar

- Syntactic structure consists of lexical items, linked by binary asymmetric relations called dependencies.

- Interested in grammatical relations between individual words (governing & dependent words).

- Does not propose a recursive structure
 - Rather a network of relations.

- These relations can also have labels.
Red figures on the screen indicated falling stocks

John booked me a flight from Houston to Portland to attend the seminar
John booked me a flight from Houston to Portland to attend the seminar.
Red figures on the screen indicated falling stocks.

John booked me a flight from Houston to Portland to attend the seminar.
Phrasal nodes are missing in the dependency structure when compared to constituency structure.
Comparison

- **Dependency structures explicitly represent**
 - Head-dependent relations (**directed arcs**)
 - Functional categories (**arc labels**)
 - Possibly some structural categories (**parts-of-speech**)

- **Phrase structure explicitly represent**
 - Phrases (**non-terminal nodes**)
 - Structural categories (**non-terminal labels**)
 - Possibly some functional categories (**grammatical functions**)
Parsing DG over PSG

- **Dependency Parsing** is more straightforward
 - Parsing can be reduced to labeling each token w_i with w_j

- Direct encoding of predicate-argument structure
 - Fragments are directly interpretable

- Dependency structure independent of word order
 - Suitable for free word order languages (like Indian languages)
Outline

- Introduction
- **Dependency Parsing**
 - Formal definition
- **Parsing Algorithms**
 - Introduction
 - Dynamic programming
 - Deterministic search
Dependency Tree

- **Formal definition**
 - An input word sequence $w_1 \ldots w_n$
 - Dependency graph $D = (W, E)$ where
 - W is the set of nodes i.e. word tokens in the input seq.
 - E is the set of unlabeled tree edges (w_i, w_j) ($w_i, w_j \in W$).
 - (w_i, w_j) indicates an edge from w_i (parent) to w_j (child).

- Task of mapping an input string to a dependency graph satisfying certain conditions is dependency parsing
Well-formedness

- A dependency graph is well-formed iff

 - **Single head**: Each word has only one head.

 - **Acyclic**: The graph should be acyclic.

 - **Connected**: The graph should be a single tree with all the words in the sentence.

 - **Projective**: If word A depends on word B, then all words between A and B are also subordinate to B (i.e. dominated by B).
Non-projective dependency tree

* Crossing lines

English has very few non-projective cases.
Outline

- Introduction
 - Phrase Structure Grammar
 - Dependency Grammar
 - Comparison and Conversion

- Dependency Parsing
 - Formal definition

- Parsing Algorithms
 - Introduction
 - Dynamic programming
 - Deterministic search
Dependency Parsing

- Dependency based parsers can be broadly categorized into
 - **Grammar driven** approaches
 - Parsing done using grammars.
 - **Data driven** approaches
 - Parsing by training on annotated/un-annotated data.
Dependency Parsing

- Dependency based parsers can be broadly categorized into
 - **Grammar driven** approaches
 - Parsing done using grammars.
 - **Data driven** approaches
 - Parsing by training on annotated/un-annotated data.

- These approaches are **not** mutually exclusive.
Covington’s Incremental Algorithm

- Incremental parsing in $O(n^2)$ time by trying to link each new word to each preceding one [Covington 2001]:

\[
\text{PARSE}(x = (w_1, \ldots, w_n))
\]

1. \text{for } i = 1 \text{ up to } n
2. \text{for } j = i - 1 \text{ down to } 1
3. \text{LINK}(w_i, w_j)
Covington’s Incremental Algorithm

- Incremental parsing in $O(n^2)$ time by trying to link each new word to each preceding one [Covington 2001]:

\[
\text{PARSE}(x = (w_1, \ldots, w_n))
\]

1. for $i = 1$ up to n
2. for $j = i - 1$ down to 1
3. \text{LINK}(w_i, w_j)

- Constraints such as \text{Single-Head} and Projectivity can be incorporated into the \text{LINK} operation.
Parsing Methods

- **Main traditions**
 - Dynamic programming
 - CYK, Eisner, McDonald MST
 - Deterministic search
 - Covington, Yamada and Matsumuto, Nivre
Dynamic Programming

- Basic Idea: Treat dependencies as constituents.
- Use, e.g., CYK parser (with minor modifications)
Dependency Chart Parsing

- Grammar is regarded as context-free, in which each node is lexicalized.
- Chart entries are subtrees, i.e., words with all their left and right dependents.
- **Problem:** Different entries for different subtrees spanning a sequence of words with different heads.
- $O(n^5)$
Generic Chart Parsing

for each of the $O(n^2)$ substrings,
for each of $O(n)$ ways of splitting it,
for each of $\leq S$ analyses of first half
for each of $\leq S$ analyses of second half,
for each of $\leq c$ ways of combining them:
combine, & add result to chart if best

$O(n^3S^2c)$

[cap spending] + [at 300 million] = [[cap spending] [at 300 million]]

$\leq S$ analyses $\leq S$ analyses $\leq cS^2$ analyses
of which we keep $\leq S$
Headed constituents ...

... have too many signatures.

How bad is \(\Theta(n^3 S^2 c) \)?

For **unheaded** constituents, \(S \) is constant: \(\text{NP, VP} \ldots \)
(similarly for dotted trees). So \(\Theta(n^3) \).

But when **different heads** \(\Rightarrow \) **different signatures**, the average
substring has \(\Theta(n) \) possible heads and \(S=\Theta(n) \) possible
signatures. So \(\Theta(n^5) \).
Dynamic Programming Approaches

- Original version \([\text{Hays 1964}]\) (grammar driven)
- Link grammar \([\text{Sleator and Temperley 1991}]\) (grammar driven)
- Bilexical grammar \([\text{Eisner 1996}]\) (data driven)
- Maximum spanning tree \([\text{McDonald 2006}]\) (data driven)
Eisner 1996

- Two novel aspects:
 - Modified parsing algorithm
 - Probabilistic dependency parsing

- Complexity: $O(n^3)$

- Modification: Instead of storing subtrees, store spans

- Span: Substring such that no interior word links to any word outside the span.

- Idea: In a span, only the boundary words are active, i.e. still need a head or a child

- One or both of the boundary words can be active
Example

Red figures on the screen indicated falling stocks.
Example

Spans:

\{ Red, figures \} \{ indicated, falling, stocks \}
Assembly of correct parse

Start by combining adjacent words to minimal spans

\{Red figures\} \{figures on\} \{on the\}
Assembly of correct parse

Combine spans which overlap in one word; this word must be governed by a word in the left or right span.
Assembly of correct parse

Combine spans which overlap in one word; this word must be governed by a word in the left or right span.
Assembly of correct parse

Combine spans which overlap in one word; this word must be governed by a word in the left or right span.

Invalid span
Assembly of correct parse

Combine spans which overlap in one word; this word must be governed by a word in the left or right span.

\{indicated, falling\} + \{falling, stocks\} → \{indicated, falling, stocks\}
Eisner 1996

- Two novel aspects:
 - Modified parsing algorithm
 - Probabilistic dependency parsing
- Complexity: $O(n^3)$
McDonald’s Maximum Spanning Trees

- Score of a dependency tree = sum of scores of dependencies
- Scores are independent of other dependencies
- If scores are available, parsing can be formulated as maximum spanning tree problem
- Two cases:
 - Projective: Use Eisner’s parsing algorithm.
- Uses online structured perceptron for determining weight vector \mathbf{w}
Parsing Methods

- **Main traditions**
 - Dynamic programming
 - CYK, Eisner, McDonald
 - Deterministic parsing
 - Covington, Yamada and Matsumuto, Nivre
Deterministic Parsing

- **Basic idea:**
 - Derive a single syntactic representation (dependency graph) through a **deterministic** sequence of **elementary** parsing actions
 - Sometimes combined with backtracking or repair

- **Motivation:**
 - Psycholinguistic modeling
 - Efficiency
 - Simplicity
Yamada and Matsumoto

- Parsing in several rounds: deterministic bottom-up $O(n^2)$
- Looks at pairs of words
- 3 actions: shift, left, right

- **Shift**: shifts focus to next word pair
Yamada and Matsumoto

Left: decides that the left word depends on the right one

```
I saw a girl with
PRP VBD DT NN IN
⇒
```

Right: decides that the right word depends on the left word

```
I saw girl with
PRP VBD NN IN
⇒
```

```
↑ a
DT
```

```
↑ a
DT
```

```
↑ girl
NN
```

```
↑ a
DT
```
Parsing Algorithm

- Go through each *pair* of words
 - Decide which *action* to take

- If a relation was detected in a pass, do another pass

- E.g. *the little girl*
 - First pass: relation between *little* and *girl*
 - Second pass: relation between *the* and *girl*

- Decision on action depends on word pair and context
Parsing

- Data-driven deterministic parsing:
 - Deterministic parsing requires an oracle.
 - An oracle can be approximated by a classifier.
 - A classifier can be trained using treebank data.

- Learning algorithms:
 - Maximum entropy modeling (MaxEnt) [Cheng et al. 2005]
 - Structured Perceptron [McDonald et al. 2006]
Evaluation of Dependency Parsing: Simply use (labeled) dependency accuracy

Accuracy = \frac{\text{number of correct dependencies}}{\text{total number of dependencies}}

= \frac{2}{5} = 0.40 = 40\%
Feature Models

Learning problem:

- Approximate a function from parser states, represented by feature vectors to parser actions,
 - Given a training set of gold standard trees.

Typical features:

- Tokens and POS tags of:
 - Target words
 - Linear context (neighbors in S and Q)
 - Structural context (parents, children, siblings in G)
 - Can not be used in dynamic programming algorithms.
Summary

- Provided an intro to dependency parsing and various dependency parsing algorithms
- Read up Nivre’s and McDonald’s tutorial on dependency parsing at ESSLLI’ 07
References

- Nivre’s and McDonald’s tutorial on dependency parsing at ESSLLI' 07

- Dependency Grammar and Dependency Parsing
 http://stp.lingfil.uu.se/~nivre/docs/05133.pdf

- Online Large-Margin Training of Dependency Parsers
 R. McDonald, K. Crammer and F. Pereira
 ACL, 2005

- Pseudo-Projective Dependency Parsing.
 Nivre, J. and J. Nilsson
 ACL, 2005
Phrase Structure Grammar

• Phrases (non-terminal nodes)
• Structural categories (non-terminal labels)
• CFG Rules
 o Recursive
 o Lexicalized

[Sue walked into the store]

[S [NP Sue] [VP walked into the store]]

[S [NP Sue] [VP [VBD walked] [PP into the store]]]

[S [NP Sue] [VP [VBD walked] [PP [P into] [NP the store]]]]

[S [NP Sue] [VP [VBD walked] [PP [P into] [NP [DT the] [NN store]]]]]

[S → NP VP]
[VP → VBD PP]
[PP → P NP]
[NP → DT NN]
Phrase Structure Grammar

[S Sue walked into the store]
[S [NP Sue] [VP walked into the store]]
[S [NP Sue] [VP [VBD walked] [PP into the store]]]
[S [NP Sue] [VP [VBD walked] [PP [P into] [NP the store]]]]
[S [NP Sue] [VP [VBD walked] [PP [P into] [NP [DT the] [NN store]]]]]

Phrases
(non-terminal nodes)

Structural categories
(non-terminal labels)
Eisner’s Model

- **Recursive Generation**
 - Each word generates its actual dependents
 - **Two Markov chains:**
 - Left dependents
 - Right dependents
Eisner’s Model

\[P(tw(1), \ldots, tw(n), links) = \prod_{i=1}^{n} P(lc(i)|tw(i))P(rc(i)|tw(i)) \]

where

\[tw(i) \text{ is } i^{\text{th}} \text{ tagged word} \]

\[lc(i) \text{ & } rc(i) \text{ are the left and right children of } i^{\text{th}} \text{ word} \]

\[P(lc(i)|tw(i)) = \prod_{j=1}^{m} P(tw(lc_{j}(i))|t(lc_{j-1}(i)), tw(i)) \]

\[P(rc(i)|tw(i)) = \prod_{j=1}^{m} P(tw(rc_{j}(i))|t(rc_{j-1}(i)), tw(i)) \]

where

\[lc_{j}(i) \text{ is the } j^{\text{th}} \text{ left child of the } i^{\text{th}} \text{ word} \]

\[t(lc_{j-1}(i)) \text{ is the tag of the preceding left child} \]
Nivre’s Algorithm

- Four parsing actions:
 - **Shift**:

 \[
 \text{Shift} \; [\ldots]S \; [w_i, \ldots]Q \rightarrow [\ldots, w_i]S \; [\ldots]Q
 \]

 - **Reduce**:

 \[
 \text{Reduce} \; [\ldots, w_i]S \; [\ldots]Q \; \exists w_k : w_k \rightarrow w_i \rightarrow [\ldots]S \; [\ldots]Q
 \]

 - **Left-Arc**:

 \[
 \text{Left-Arc} \; [\ldots, w_i]S \; [w_j, \ldots]Q \; \neg \exists w_k : w_k \rightarrow w_i \rightarrow [\ldots]S \; [w_j, \ldots]Q \; w_i \leftarrow w_j
 \]

 - **Right-Arc**:

 \[
 \text{Right-Arc} \; [\ldots, w_i]S \; [w_j, \ldots]Q \; \neg \exists w_k : w_k \rightarrow w_j \rightarrow [\ldots, w_i, w_j]S \; [\ldots]Q \; w_i \rightarrow w_j
 \]
Nivre’s Algorithm

- Characteristics:
 - **Arc-eager** processing of right-dependents
 - Single pass over the input gives time worst case complexity $O(2n)$
Red figures on the screen indicated falling stocks.
Example

\[
\text{Shift}
\]
Example

\[
\left\{ \begin{array}{c}
\text{Red} \\
\text{figures on the screen indicated falling stocks}
\end{array} \right\}_Q
\]

Left-arc
Example

\[
\text{[ROOT] \ Red \ figures \ } \left(\text{on the screen indicated falling stocks} \right)
\]

Shift
Example

\[
\begin{array}{c}
\text{_ROOT_ } \text{Red} \quad \text{figures on } S \\
\end{array}
\begin{array}{c}
\text{the screen indicated falling stocks } Q
\end{array}
\]

Right-arc
Example

\[
\begin{array}{c}
\text{_ROOT_} \quad \text{Red} \\
\downarrow \quad \downarrow \\
\text{figures} \quad \text{on} \quad \text{the} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\textit{screen indicated falling stocks}} \\
\end{array}
\]

Shift
Example

Left-arc

\[
\begin{array}{c}
\text{Red figures on the screen indicated falling stocks} \\
\text{S} \\
\text{Q}
\end{array}
\]
Example

Red figures on the screen indicated falling stocks

Right-arc
Example

Red figures on the screen indicated falling stocks.

Reduce
Example

Reduce
Example

```
\begin{array}{c}
\text{Red figures on the screen indicated falling stocks}
\end{array}
```

Left-arc
Example

Red figures on the screen indicated falling stocks

Right-arc
Example

Red figures on the screen indicated falling stocks

Shift
Example

Left-arc

Red figures on the screen indicated falling stocks
Example

Red figures on the screen indicated falling stocks

Right-arc
Example

Red figures on the screen indicated falling stocks

Reduce
Example

Red figures on the screen indicated falling stocks

Reduce