Approximate Inference 1

Forward Sampling

• This section on approximate inference relies on samples / particles
• Full particles: complete assignment to all network variables eg. \((X_1 = x_1, X_2 = x_2, ..., X_N = x_N)\)

Forward Sampling

• Topological sort or order: An ordering of the nodes in the DAG where \(X\) comes before \(Y\) in the ordering if there is a directed path from \(X\) to \(Y\) in the graph.
• A topological order is equivalent to a partial order on the nodes of the graph
• There may be several topological orderings

Examples of Topological orders:
A,B,C,D
B,A,C,D

Student Example

<table>
<thead>
<tr>
<th>Difficulty (D)</th>
<th>Intelligence (I)</th>
<th>SAT (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low low C</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>low low B</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>low high A</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>high low C</td>
<td>0.7</td>
<td>0.25</td>
</tr>
<tr>
<td>high low B</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>high low A</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Diagram:

- Difficulty (D)
- Intelligence (I)
- SAT (S)
- Grade
- Letter

Sets:
- \(I\), \(P(I)\)
- \(D\), \(P(D)\)
- \(S\), \(P(S)\)
- \(L\), \(P(L)\)
Forward Sampling

Suppose you want to calculate $P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)$ using forward sampling on a Bayesian network. The algorithm:

1. Do a topological sort of the nodes in the Bayesian network.
2. For $j = 1$ to NUM_SAMPLES
 For each node i in the ordering (starting from the top of the Bayesian network down)
 Sample the value \hat{x}_i from the distribution $P(X_i | \text{Parents}(X_i))$
 Add $\{\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n\}$ to your collection of samples
3. Let $P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \frac{\text{# of samples with } X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n}{\text{NUM_SAMPLES}}$

Forward Sampling

Topological ordering: D, I, G, S, L

1. Sample D from $P(D)$ (Say you get $D=\text{high}$)
2. Sample I from $P(I)$ (Say you get $I=\text{low}$)
3. Sample G from $P(G|I=\text{low}, D=\text{high})$ (Say you get $G=\text{C}$)
4. Sample S from $P(S|I=\text{low})$ (Say you get $S=\text{low}$)
5. Sample L from $P(L|G=\text{C})$ (Say you get $L=\text{weak}$)

You now have a sample (D=high, I=low, G=C, S=low, L=weak)

How do you sample from $P(X_i | \text{Parents}(X_i))$?

Note: $P(X_i | \text{Parents}(X_i))$ is a multinomial distribution $P(x_i^1, \ldots, x_i^k | \theta_1, \ldots, \theta_j)$?

- Generate a sample s uniformly from $[0,1]$
- Partition interval into k subintervals: $[0, \theta_1)$, $[\theta_1, \theta_1+\theta_2)$, ...
- More generally, the ith interval is $\left[\sum_{j=1}^{i-1} \theta_j, \sum_{j=1}^{i} \theta_j \right]$
- If s is in the ith interval, the sample value is x_i
- Use binary search to find the interval for s in time $O(\log k)$
Suppose your list of samples looks like the following table:

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>G</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>low</td>
<td>B</td>
<td>low</td>
<td>weak</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>strong</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>weak</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>strong</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>C</td>
<td>low</td>
<td>weak</td>
</tr>
</tbody>
</table>

\[P(I=\text{high}) = \frac{3}{5} = 0.6 \]

Note that this value becomes a lot more accurate as the number of samples heads to infinity.

• From a set of particles \(D = \{\xi[1], \ldots, \xi[M]\} \), we can estimate the expectation of any function \(f \) as:

\[
\hat{E}_D(f) = \frac{1}{M} \sum_{m=1}^{M} f(\xi[m])
\]

• To estimate \(P(y) \)

\[
\hat{P}_D(y) = \frac{1}{M} \sum_{m=1}^{M} I\{y[m] = y\}
\]

Define

• \(M \) = total # of particles generated
• \(n = |X| \)
• \(p = \max_i |Pa_X[i]| \)
• \(d = \max_i |Val(X_i)| \)

Overall cost of sampling is \(O(M \cdot n \cdot p \cdot \log(d)) \)

• To get the CPD entry for \(X \) given \(Pa_X \), it costs \(O(p) \)
• Sampling process for \(P(X|Pa_X) \) costs \(O(\log(d)) \)

How accurate is this estimate? Using the Hoeffding bound:

\[
P_D(\hat{P}_D(y) \neq [P(y) - \varepsilon, P(y) + \varepsilon]) \leq 2e^{-2M\varepsilon^2}
\]

How many samples are required to achieve an estimate whose error is bounded by \(\varepsilon \), with probability at least \((1-\delta)\)? Setting

\[2e^{-2M\varepsilon^2} \leq \delta \] we get

\[M \geq \frac{\ln(2/\delta)}{2\varepsilon^2} \]
Forward Sampling

How accurate is this estimate? Using the Chernoff bound:

\[P_D(\hat{P}_D(y) \notin P(y)(1 \pm \varepsilon)) \leq 2e^{-MP(y)e^{2/3}} \]

How many samples are required to achieve an estimate whose error is bounded by \(\varepsilon \), with probability at least \((1-\delta)\)?

\[M \geq \frac{3\ln(2/\delta)}{P(y)e^{2/3}} \]

Note: This requires us to know \(P(y) \)

Rejection Sampling

What if we want to estimate \(P(y|E=e) \)?

- **Rejection sampling**: do forward sampling but throw out samples where \(E \neq e \)

Example:

\[
\begin{array}{c|c|c|c|c}
D & I & G & S & L \\
\hline
\text{low} & \text{low} & B & \text{low} & \text{weak} \\
\text{low} & \text{high} & A & \text{high} & \text{strong} \\
\text{low} & \text{high} & A & \text{high} & \text{weak} \\
\text{high} & \text{high} & A & \text{high} & \text{strong} \\
\text{high} & \text{low} & C & \text{low} & \text{weak} \\
\end{array}
\]

\[P(I=\text{high}|L=\text{weak}) = 1/3 \]

Rejection Sampling

What if the evidence \(E=e \) is very very rare?

- For example, if \(P(e) = 0.001 \), then for 10,000 samples, we get 10 unrejected samples
- To obtain at least \(M^* \) unrejected samples, we need to generate on average \(M = M^*/P(e) \) samples
- If evidence is rare, we end up generating a lot of samples which wastes time
Rejection Sampling

Bad news:
- Rare evidence is the norm!
- As # of evidence variables $k = |E|$ grows, the probability of the evidence decreases exponentially with k

Need something better than rejection sampling!

Likelihood Weighting

Intuition: Weight samples according to probability of the evidence

<table>
<thead>
<tr>
<th>Intelligence</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>0.7</td>
</tr>
<tr>
<td>high</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Drawing I = high and S = high should be 80% of a sample
Drawing I = low and S = high should be 5% of a sample

Likelihood Weighting

Weighted particles:

$$D = \langle \hat{\xi}[1], w[1]\rangle, \ldots, \langle \hat{\xi}[M], w[M]\rangle$$

Estimate:

$$\hat{P}_D(y|e) = \frac{\sum_{m=1}^{M} w[m]I\{y[m] = y\}}{\sum_{m=1}^{M} w[m]}$$
Likelihood Weighting

Procedure LW-Sample(
 β, // Bayesian network over X
 Z=z // Event in the network
)
1. Let X₁, ..., Xₙ be a topological ordering of X
2. w ← 1
3. for i = 1, ..., n
4. uᵢ ← x<Paₓᵢ> // Assignment to Paₓᵢ in x₁, ..., xᵢ
5. if Xᵢ ∉ Z then
6. Sample xᵢ from P(Xᵢ | uᵢ)
7. else
8. xᵢ ← z<xᵢ> // Assignment to Xᵢ in z
9. w ← w · P(xᵢ | uᵢ) // Multiply weight by probability of desired value
10. return (x₁, ..., xₙ), w