Inference Complexity As Learning Bias

Daniel Lowd
Dept. of Computer
and Information Science
University of Oregon

Joint work with Pedro Domingos

Don’t use model complexity as your learning bias …

Use inference complexity.
The Goal

Learning algorithms \rightarrow \text{Model} \rightarrow \text{Inference algorithms} \rightarrow \text{Answers!}

This talk:
- How to learn \textit{accurate} and \textit{efficient} models by tightly integrating learning and inference
- Experiments: \textit{exact inference} in $< 100 \text{ms}$ in models with treewidth > 100

Outline

- Standard solutions (and why they fail)
- Background
 - Learning with Bayesian networks
 - Inference with arithmetic circuits
- Learning arithmetic circuits
 - Scoring
 - Search
 - Efficiency
- Experiments
- Conclusion
Solution 1: Exact Inference

Data → Model → Jointree → Answers!

Solution 2: Approximate Inference

Data → Model → Approximation → Answers!

Approximations are often too inaccurate. More accurate algorithms tend to be slower.
Solution 3: Learn a tractable model

Related work: Thin junction trees

Polynomial in data, but still exponential in treewidth

[E.g.: Chechetka & Guestrin, 2007]

Thin junction trees are thin

- Maximum effective treewidth is 2-5
- We have learned models with treewidth >100
Solution 3: Learn a tractable model

Our work: Arithmetic circuits with penalty on circuit size

Outline

- Standard solutions (and why they fail)
- **Background**
 - Learning with Bayesian networks
 - Inference with arithmetic circuits
- Learning arithmetic circuits
 - Overview
 - Optimizations
- Experiments
- Conclusion
Bayesian networks

Problem: Compactly represent probability distribution over many variables

Solution: Conditional independence

\[P(A,B,C,D) = P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(D|B,C) \]

… With decision-tree CPDs

Problem: Number of parameters is exponential in the maximum number of parents

Solution: Context-specific independence

\[P(D|B,C) = \]

\[\begin{array}{c}
\text{true} \\
0.2 \\
\end{array} \]

\[\begin{array}{c}
\text{false} \\
0.5 \\
\end{array} \]

\[\begin{array}{c}
\text{false} \\
0.7 \\
\end{array} \]
… Compiled to circuits

Problem: Inference is exponential in treewidth
Solution: Compile to arithmetic circuits

![Arithmetic circuits diagram]

- Directed, acyclic graph with single root
 - Leaf nodes are inputs
 - Interior nodes are addition or multiplication
 - Can represent any distribution

- **Inference is linear in model size!**
 - Never larger than junction tree
 - Can exploit local structure to save time/space
ACs for Inference

- Bayesian network:
 \[P(A, B, C) = P(A) \cdot P(B) \cdot P(C|A,B) \]
- Network polynomial:
 \[\lambda_A \lambda_B \lambda_C \cdot \theta_A \theta_B \theta_C|AB + \lambda_{\neg A} \lambda_B \lambda_C \cdot \theta_{\neg A} \theta_B \theta_C|\neg AB + \ldots \]
- Can compute arbitrary marginal queries by evaluating network polynomial.
- Arithmetic circuits (ACs) offer efficient, factored representations of this polynomial.
- Can take advantage of local structure such as context-specific independence.

BN Structure Learning

[Chickering et al., 1996]

- Start with an empty network
- Greedily add splits to decision trees one at a time, enforcing acyclicity

\[\text{score}(C, T) = \log P(T|C) - k_p \cdot n_p(C) \]

(accuracy – # parameters)
Key Idea

For an arithmetic circuit C on an i.i.d. training sample T:

Typical cost function:

$$\text{score}(C,T) = \log P(T|C) - k_p \ n_p(C)$$
(accuracy – # parameters)

Our cost function:

$$\text{score}(C,T) = \log P(T|C) - k_p \ n_p(C) - k_e \ n_e(C)$$
(accuracy – # parameters – circuit size)

Basic algorithm

Following Chickering et al. (1996), we induce our statistical models by greedily selecting splits for the decision-tree CPDs. Our approach has two key differences:

1. We optimize a different objective function

2. We return a Bayesian network that has already been compiled into a circuit
Efficiency

Compiling each candidate AC from scratch at each step is too expensive.

Instead: Incrementally modify AC as we add splits.
Algorithm

Create initial product of marginals circuit
Create initial split list
Until convergence:
 For each split in list
 Apply split to circuit
 Score result
 Undo split
 Apply highest-scoring split to circuit
Add new child splits to list
Remove inconsistent splits from list
How to split a circuit

D: Parameter nodes to be split
V: Indicators for the splitting variable
M: First mutual ancestors of D and V

For each indicator λ in V,
Copy all nodes between M and D or V, conditioned on λ.

For each m in M,
Replace children of m that are ancestors of D or V with a sum over copies of the ancestors times the λ each copy was conditioned on.

Optimizations

We avoid rescoring splits every iteration by:
1. Noting that likelihood gain never changes, only number of edges added
2. Evaluating splits with higher likelihood gain first, since likelihood gain is an upper bound on score.
3. Re-evaluate number of edges added only when another split may have affected it (AC-Greedy).
4. Assume the number of edges added by a split only increases as the algorithm progresses (AC-Quick).
Experiments

Datasets:
- KDD-Cup 2000: 65 variables
- Anonymous MSWeb: 294 variables
- EachMovie (subset): 500 variables

Algorithms:
- WinMine toolkit + Gibbs sampling
- AC + Exact inference

Queries:
Generated queries from the test data with varying numbers of evidence and query variables

Learning time
Inference time

Accuracy: EachMovie
Our method learns complex, accurate models

Tree width of learned models:

<table>
<thead>
<tr>
<th></th>
<th>AC-Greedy</th>
<th>AC-Quick</th>
<th>WinMine</th>
</tr>
</thead>
<tbody>
<tr>
<td>EachMovie</td>
<td>35</td>
<td>54</td>
<td>281</td>
</tr>
<tr>
<td>KDD Cup</td>
<td>38</td>
<td>38</td>
<td>53</td>
</tr>
<tr>
<td>MSWeb</td>
<td>114</td>
<td>127</td>
<td>118</td>
</tr>
</tbody>
</table>

Log-likelihood of test data:

<table>
<thead>
<tr>
<th></th>
<th>AC-Greedy</th>
<th>AC-Quick</th>
<th>WinMine</th>
</tr>
</thead>
<tbody>
<tr>
<td>EachMovie</td>
<td>−55.7</td>
<td>−54.9</td>
<td>−53.7</td>
</tr>
<tr>
<td>KDD Cup</td>
<td>−2.16</td>
<td>−2.16</td>
<td>−2.16</td>
</tr>
<tr>
<td>MSWeb</td>
<td>−9.85</td>
<td>−9.85</td>
<td>−9.69</td>
</tr>
</tbody>
</table>

(\(2^{35} = 34\) billion)

Conclusion

- **Problem:** Learning accurate intractable models = Learning inaccurate models
- **Solution:** Use inference complexity as learning bias
- **Algorithm:** Learn arithmetic circuits with penalty on circuit size
- **Result:** Much faster and more accurate inference than standard Bayes net learning