Exact Inference 4: Clique Trees

Clique Tree Calibration

- In the previous lecture, we used the clique tree to compute the probability of a single variable eg. $P(J)$
- Root clique must contain J
- Messages passed upstream (toward root)
Clique Tree Calibration

• But we often want to compute the probability of a large number of variables eg. P(J), P(C), P(H)
• What if we wanted to compute the probability of every random variable in the network?

Clique Tree Calibration

• The expensive way:
 – Run clique tree inference for each node
 – Cost is $O(c \times \text{number of nodes})$
• A little less expensive:
 – Make each clique the root and run inference
 – Cost is $O(c \times \text{number of cliques})$

Where $c = \text{cost of running clique tree inference}$
Clique Tree Calibration

• The smart way:
 – Notice that you end up calculating the same messages over and over again
 – Cache these result and reuse them in a clever way! => dynamic programming
 – Results in a cost of $2c$

Clique Tree Calibration

- As long as the root clique is on the C_j side, exactly the same message is sent from C_i to C_j (regardless of which clique is the root)
- Same thing applies if the root is on the C_i side
- For any given clique tree, each edge has two messages associated with it – one for each direction
- If there are c cliques, there are $(c-1)$ edges and $2(c-1)$ messages to compute
Clique Tree Calibration

- Let \mathcal{T} be a clique tree. We say that C_i is ready to transmit to a neighbor C_j when C_i has messages from all of its neighbors except from C_j.
- When C_i is ready to transmit to C_j, it computes $\delta_{i\rightarrow j}(S_{ij})$ from all incoming messages (except from C_j).
- Then eliminating the variables in $C_i - S_{ij}$.
- Use dynamic programming to avoid recomputing the same message multiple times.

Clique Tree Calibration

Sum-Product Belief Propagation

Procedure CTREE-SP-Calibrate (
Φ, // Set of factors
\mathcal{T} // Clique tree over Φ)

1. Initialize-Cliques
2. while exist i, j such that i is ready to transmit to j
3. $\delta_{i\rightarrow j}(S_{ij}) \leftarrow$ SP-Message(i,j)
4. for each clique i
5. $\beta_i \leftarrow \psi_i \cdot \prod_{k \in \text{Nh}_i} \delta_{k \rightarrow i}$
6. return $\{ \beta_i \}$

Procedure CTREE-SP-Calibrate (
Φ, // Set of factors
\mathcal{T} // Clique tree over Φ)

1. Initialize-Cliques
2. while exist i, j such that i is ready to transmit to j
3. $\delta_{i\rightarrow j}(S_{ij}) \leftarrow$ SP-Message(i,j)
4. for each clique i
5. $\beta_i \leftarrow \psi_i \cdot \prod_{k \in \text{Nh}_i} \delta_{k \rightarrow i}$
6. return $\{ \beta_i \}$
Clique Tree Calibration

- **Upward pass**: pick a root, send messages to root
- **Downward pass**: then send messages to the leaves
- In asynchronous version, each clique sends message as soon as it is ready

Message Passing: Sum Product

Example of a downward pass in the Student network:
Message Passing: Sum Product

Example of a downward pass in the Student network:

\[\delta_{2 \to 3}(G,I): \sum_{C_1} \psi_2(C_2) \times \delta_{1 \to 2}(D) \]
\[\delta_{3 \to 5}(G,J): \sum_{C_1} \psi_3(C_3) \times \delta_{2 \to 3}(G,I) \]
\[\delta_{5 \to 3}(G,S): \sum_{C_1} \psi_5(C_5) \times \delta_{4 \to 5}(G,J) \]

Clique Tree Calibration

- At the end, compute beliefs for all cliques in the tree by multiplying initial potential with each of the incoming messages
- Corollary 10.2: Assume that, for each clique \(i \), \(\beta_i \) is computed as in the Sum-Product Belief Propagation algorithm. Then

\[\beta_i(C_i) = \sum_{X \in C_i} \tilde{P}_\Phi(X) \]
Clique Tree Calibration

- C_i computes the message to a neighboring clique C_j based on its initial potential ψ_i (not its modified potential β_i).
- Modified potential already integrates information from C_j (would be double-counting factors in C_j).

Clique Tree Calibration

- At the end, each clique contains the marginal (unnormalized) probability over the variables in its scope.
- Can compute marginal probability of X by selecting the clique whose scope contains X and eliminating the redundant variables in the clique.
 - If X appears in two cliques, we can pick either one.
 - Both must agree on the marginal.
Clique Tree Calibration

Two adjacent cliques C_i and C_j are said to be calibrated if

$$\sum_{c_i \in S_{i,j}} \beta_i(C_i) = \sum_{c_j \in S_{i,j}} \beta_j(C_j)$$

Clique Tree Calibration

A clique \mathcal{T} is calibrated if all pairs of adjacent cliques are calibrated. For a calibrated clique tree, we use the term clique beliefs for $\beta_i(C_i)$ and sepset beliefs for

$$\mu_{i,j}(S_{i,j}) = \sum_{c_i \in S_{i,j}} \beta_i(C_i) = \sum_{c_j \in S_{i,j}} \beta_j(C_j)$$
Calibrated Clique Trees as a Distribution

- Recall that the unnormalized measure:

\[\tilde{P}_\Phi(X) = \prod_{\phi \in \Phi} \phi_i(X_i) \]

- We will reparameterize the above as:

\[\tilde{P}_\Phi(X) = \frac{\prod_{i \in V} \beta_i(C_i)}{\prod_{(i-j) \in E} \mu_{i,j}(S_{i,j})} \]

This is called the clique tree invariant

- Why? Useful for an alternate version of message passing
Calibrated Clique Trees as a Distribution

To see this, note that at calibration we have:

- **Clique beliefs:**
 \[
 \beta_i = \psi_i \cdot \prod_{k \in N_b} \delta_{k \rightarrow i}
 \]

- **Sepset beliefs:**
 \[
 \mu_{i,j}(S_{i,j}) = \sum_{C_i - S_{i,j}} \beta_i(C_i) = \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in N_b} \delta_{k \rightarrow i}
 \]
 \[
 = \sum_{C_i - S_{i,j}} \psi_i \cdot \delta_{j \rightarrow i} \prod_{k \in (N_b \setminus \{i,j\})} \delta_{k \rightarrow i} = \delta_{j \rightarrow i} \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in (N_b \setminus \{i,j\})} \delta_{k \rightarrow i}
 \]
 \[
 = \delta_{j \rightarrow i} \delta_{i \rightarrow j}
 \]

Using the clique beliefs and sepset beliefs,

\[
\tilde{P}_\phi(X) = \frac{\prod_{i \in V} \beta_i(C_i)}{\prod_{(i \rightarrow j) \in E_f} \mu_{i,j}(S_{i,j})} = \frac{\prod_{i \in V} \psi_i(C_i) \prod_{k \in N_b} \delta_{k \rightarrow i}}{\prod_{(i \rightarrow j) \in E_f} \delta_{i \rightarrow j} \delta_{j \rightarrow i}}
\]

Each message \(\delta_{i \rightarrow j} \) appears once in the numerator and once in the denominator:

\[
\tilde{P}_\phi(X) = \prod_{i \in V} \psi_i(C_i)
\]
Calibrated Clique Trees as a Distribution

The measure induced by a calibrated tree \mathcal{T} is defined as:

$$Q_T = \frac{\prod_{i \in V_T} \beta_i(C_i)}{\prod_{(i-j) \in E_T} \mu_{i,j}(S_{i,j})}$$

where

$$\mu_{i,j} = \sum_{C_i \sim S_{i,j}} \beta_i(C_i) = \sum_{C_j \sim S_{i,j}} \beta_j(C_j)$$

Calibrated Clique Trees as a Distribution

Theorem 10.4: Let \mathcal{T} be a clique tree over Φ, and let $\beta_i(C_i)$ be a set of calibrated potentials for \mathcal{T}. Then, $\tilde{P}_\Phi(X) \propto Q_T$ if and only if, for each $i \in V_T$, we have that

$$\beta_i(C_i) \propto \tilde{P}_\Phi(C_i)$$

(Proof Omitted)

This alternate representation of the joint measure directly reveals the clique marginals $\beta_i(C_i)$
Message Passing: Belief Update

First message from C_j to C_i

Second message from C_i to C_j (once it receives messages from all neighbors except j)

- Previously: final potential (β_i) not used in message to C_j (would double count information from C_j)
- Different approach: multiply all messages together and divide resulting factor by $\delta_{j\rightarrow i}$ (removes C_j's contribution)
Message Passing: Belief Update

- Let X and Y be disjoint sets of variables, and let $\phi_1(X,Y)$ and $\phi_2(Y)$ be two factors.
- We define the factor division ϕ_1/ϕ_2 to be a factor ψ of scope X, Y defined as follows:

$$
\psi(X,Y) = \frac{\phi_1(X,Y)}{\phi_2(Y)}
$$

Where we define $0/0 = 0$. The operation not well defined if denominator is 0 and numerator isn’t
Message Passing: Belief Update

New version of message passing:

\[\beta_i = \psi_i \cdot \prod_{k \in \text{Nh}_i} \delta_{k \rightarrow i} \]
(As before)

\[\delta_{i \rightarrow j} = \frac{\sum \beta_i}{\delta_{j \rightarrow i}} \]
Note the division

Notice that:

\[\sum_{G,I} \beta_2(G,I,D) \cdot \delta_{1 \rightarrow 2}(D) \cdot \delta_{3 \rightarrow 2}(G,I) \]

\[= \sum_{G,I} \psi_2(G,I,D) \cdot \delta_{1 \rightarrow 2}(D) \cdot \delta_{3 \rightarrow 2}(G,I) \]

(Approaches are equivalent)
Message Passing: Belief Update

Belief-update Message Passing Algorithm

Procedure CTee-BU-Calibrate (\(\Phi\), \(\mathcal{T}\))

1. Initialize-CTree
2. while exists an uninformed clique in \(\mathcal{T}\)
3. Select \((i—j) \in \mathcal{E}_T\)
4. BU-Message\((i, j)\)
5. return \{\(\beta_i\)\}

Note: any arbitrary pair can be chosen without violating the correctness of the algorithm

Message Passing: Belief Update

Procedure Initialize-CTree ()
1. for each clique \(C_i\)
2. \(\beta_i \leftarrow \prod_{\phi \ni \mathcal{S}_i} \phi\)
3. for each edge \((i—j) \in \mathcal{E}_T\)
4. \(\mu_{i,j} \leftarrow 1\)

Procedure BU-Message (\(i\), \(j\))
1. \(\sigma_{i\rightarrow j} \leftarrow \sum_{C \cap \mathcal{S}_i} \beta_i\) // marginalize clique over the sepset
2. \(\beta_j \leftarrow \beta_j \cdot \frac{\sigma_{i\rightarrow j}}{\mu_{i,j}}\) // Divides out the previous message (prevents double counting)
3. \(\mu_{i,j} \leftarrow \sigma_{i\rightarrow j}\) // Remembers the current message as the new previous message
Message Passing: Belief Update

The following are the implications (stated without proof here):

- Sum-Product and Belief-Update message passing are equivalent
- Belief-update message passing guaranteed to converge to the correct marginals
- Message schedule that guarantees convergence to the correct clique marginals in two passes:
 - Follow upward-downward pass schedule using any arbitrarily chosen root clique C_r.

Constructing a Clique Tree
Constructing a Clique Tree

How do we construct a clique tree?

1. Through executing Variable Elimination
 - A clique C_i corresponds to a factor ψ_i
 - Undirected edge connects C_i and C_j when τ_i is used directly in the computation of ψ_j (or vice versa)
 - Cliques in clique tree are maximal cliques in the induced graph

2. Manipulating the graph directly
 1. Given a set of factors, construct the undirected graph \mathcal{H}_Φ
 2. Triangulate \mathcal{H}_Φ to construct a chordal graph \mathcal{H}^*
 3. Find cliques in \mathcal{H}^*, and make each one a node in a cluster graph
 4. Run the maximum spanning tree algorithm on the cluster graph to construct a tree
Constructing a Clique Tree

- **Triangulation**: constructing a chordal graph that subsumes an existing graph \mathcal{H}
- **Minimum triangulation**: largest clique in the resulting chordal graph has minimum size
- Finding the minimum triangulation is NP-hard – need to resort to heuristics

Constructing a Clique Tree

- Finding the maximal clique in a general graph is NP-hard
 - But for chordal graphs, this is easy (number of possible approaches)
- Finding edges in clique tree
 - Use maximum spanning tree algorithm
 - Nodes are the maximal cliques, edges have weight equal to $|C_i \cap C_j|$