Clique Tree Calibration

• In the previous lecture, we used the clique tree to compute the probability of a single variable eg. P(J)
• Root clique must contain J
• Messages passed upstream (toward root)

```
1: (C,D) 2: (G, I, D) 3: (G, S, I) 4: (H, G, J) 5: (G, J, S, L)
```

• But we often want to compute the probability of a large number of variables eg. P(J), P(C), P(H)
• What if we wanted to compute the probability of every random variable in the network?

Clique Tree Calibration

• The expensive way:
 – Run clique tree inference for each node
 – Cost is $O(c \times \text{number of nodes})$

• A little less expensive:
 – Make each clique the root and run inference
 – Cost is $O(c \times \text{number of cliques})$

Where $c =$ cost of running clique tree inference
Clique Tree Calibration

• The smart way:
 – Notice that you end up calculating the same messages over and over again
 – Cache these result and reuse them in a clever way! => dynamic programming
 – Results in a cost of $2c$

Clique Tree Calibration

• As long as the root clique is on the C_i side, exactly the same message is sent from C_i to C_j (regardless of which clique is the root)
• Same thing applies if the root is on the C_j side
• For any given clique tree, each edge has two messages associated with it – one for each direction
• If there are c cliques, there are $(c-1)$ edges and $2(c-1)$ messages to compute

Clique Tree Calibration

• Let T be a clique tree. We say that C_i is ready to transmit to a neighbor C_j when C_i has messages from all of its neighbors except from C_j
• When C_i is ready to transmit to C_j, it computes $\delta_{i\rightarrow j}(S_{i,j})$ from all incoming messages (except from C_j).
• Then eliminating the variables in $C_i - S_{i,j}$
• Use dynamic programming to avoid recomputing the same message multiple times

Clique Tree Calibration

Sum-Product Belief Propagation

Procedure CTree-SP-Calibrate (
Φ, \hspace{1em} // Set of factors
T \hspace{1em} // Clique tree over Φ
)

1. Initialize-Cliques
2. while exist i, j such that i is ready to transmit to j
3. $\delta_{i\rightarrow j}(S_{i,j}) \leftarrow SP$-Message($i$)
4. for each clique i
5. $\beta_i \leftarrow \psi_{i} \cdot \prod_{k \in \mathcal{N}_i} \delta_{k\rightarrow i}$
6. return $\{ \beta_i \}$
Clique Tree Calibration

- **Upward pass**: pick a root, send messages to root
- **Downward pass**: then send messages to the leaves
- In asynchronous version, each clique sends message as soon as it is ready

Message Passing: Sum Product

Example of a downward pass in the Student network:

\[
\delta_{k\rightarrow l}(Y): \sum_{\mathcal{C}} \psi_l(\mathcal{C}) \times \delta_{k\rightarrow l}
\]

\[
\delta_{k\rightarrow l}(Z): \sum_{\mathcal{C}} \psi_l(\mathcal{C}) \times \delta_{k\rightarrow l}
\]

\[
\delta_{k\rightarrow l}(W): \sum_{\mathcal{C}} \psi_l(\mathcal{C}) \times \delta_{k\rightarrow l}
\]

\[
\delta_{k\rightarrow l}(V): \sum_{\mathcal{C}} \psi_l(\mathcal{C}) \times \delta_{k\rightarrow l}
\]

\[
\delta_{k\rightarrow l}(U): \sum_{\mathcal{C}} \psi_l(\mathcal{C}) \times \delta_{k\rightarrow l}
\]

At the end, compute beliefs for all cliques in the tree by multiplying initial potential with each of the incoming messages

Corollary 10.2: Assume that, for each clique \(i \), \(\beta_i \) is computed as in the Sum-Product Belief Propagation algorithm. Then

\[
\beta_i(\mathcal{C}_i) = \sum_{X-C_i} \tilde{P}_\phi(X)
\]
Clique Tree Calibration

- C_i computes the message to a neighboring clique C_j based on its initial potential ψ_i (not its modified potential β_i)
- Modified potential already integrates information from C_j (would be double-counting factors in C_j)

Clique Tree Calibration

- At the end, each clique contains the marginal (unnormalized) probability over the variables in its scope
- Can compute marginal probability of X by selecting the clique whose scope contains X and eliminating the redundant variables in the clique
 - If X appears in two cliques, we can pick either one
 - Both must agree on the marginal

Clique Tree Calibration

Two adjacent cliques C_i and C_j are said to be calibrated if

$$\sum_{c_{i-S_{i,j}}} \beta_i(C_i) = \sum_{c_{j-S_{i,j}}} \beta_j(C_j)$$

Clique Tree Calibration

A clique \mathcal{T} is calibrated if all pairs of adjacent cliques are calibrated. For a calibrated clique tree, we use the term clique beliefs for $\beta_i(C_i)$ and sepset beliefs for

$$\mu_{i,j}(S_{i,j}) = \sum_{c_{i-S_{i,j}}} \beta_i(C_i) = \sum_{c_{j-S_{i,j}}} \beta_j(C_j)$$
Calibrated Clique Trees as a Distribution

To see this, note that at calibration we have:

• Clique beliefs:
 \[\beta_j = \psi_j \cdot \prod_{k \in N_{bh}} \delta_{k \rightarrow i} \]

• Sepset beliefs:
 \[\mu_{i,j}(S_{i,j}) = \sum_{C_{i-j}} \beta_j(C_i) = \sum_{C_{i-j}} \psi_j \cdot \prod_{k \in N_{bh}} \delta_{k \rightarrow i} \]
 \[= \sum_{C_{i-j}} \psi_j \cdot \delta_{j \rightarrow i} \cdot \prod_{k \in (N_{bh} \setminus \{j\})} \delta_{k \rightarrow i} = \delta_{i \rightarrow j} \sum_{C_{i-j}} \psi_j \cdot \prod_{k \in (N_{bh} \setminus \{j\})} \delta_{k \rightarrow i} \]
 \[= \delta_{i \rightarrow j} \delta_{j \rightarrow i} \]

Calibrated Clique Trees as a Distribution

Using the clique beliefs and sepset beliefs,

\[\tilde{P}_g(X) = \frac{\prod_{j \in J} \beta_j(C_j)}{\prod_{(i-j) \in E_j} \mu_{i,j}(S_{i,j})} \]

Each message \(\delta_{i \rightarrow j} \) appears once in the numerator and once in the denominator:

\[\tilde{P}_g(X) = \prod_{i \in I} \psi_i(C_i) \]
Calibrated Clique Trees as a Distribution

The measure induced by a calibrated tree \mathcal{T} is defined as:

$$Q_T = \frac{\prod_{i \in V_T} \beta_i(C_i)}{\prod_{(i-j) \in E_T} \mu_{i,j}(S_{i,j})}$$

where

$$\mu_{i,j} = \sum_{C_i \cap S_{i,j}} \beta_i(C_i) = \sum_{C_j \cap S_{i,j}} \beta_i(C_i)$$

Calibrated Clique Trees as a Distribution

Theorem 10.4: Let \mathcal{T} be a clique tree over \mathcal{F}, and let $\beta_i(C_i)$ be a set of calibrated potentials for \mathcal{T}. Then, $\bar{P}_0(X) \propto Q_T$ if and only if, for each $i \in V_T$, we have that $\beta_i(C_i) \propto \bar{P}_0(C_i)$

(Proof Omitted)

This alternate representation of the joint measure directly reveals the clique marginals $\beta_i(C_i)$

Message Passing: Belief Update

First message from C_j to C_i

Second message from C_i to C_j (once it receives messages from all neighbors except j)

- Previously: final potential (β_i) not used in message to C_j (would double count information from C_j)
- Different approach: multiply all messages together and divide resulting factor by δ_{i-j} (removes C_j's contribution)
Message Passing: Belief Update

• Let X and Y be disjoint sets of variables, and let $\phi_1(X,Y)$ and $\phi_2(Y)$ be two factors.
• We define the factor division $\frac{\phi_1}{\phi_2}$ to be a factor ψ of scope X, Y defined as follows:

$$\psi(X, Y) = \frac{\phi_1(X,Y)}{\phi_2(Y)}$$

Where we define $0/0 = 0$. The operation not well defined if denominator is 0 and numerator isn’t.

New version of message passing:

$$\beta_i = \psi_i \cdot \prod_{k \in N_i^h} \delta_{k \rightarrow i}$$ (As before)

$$\delta_{i \rightarrow j} = \frac{\sum \beta_i}{\delta_{j \rightarrow i}}$$ Note the division

Example: Using CTree-SP-Calibrate as the Message Passing algorithm:

Notice that:

$$\sum_{G,D} \delta_{1 \rightarrow 2}(D) \delta_{3 \rightarrow 2}(G,I) = \sum_{G,D} \psi_2(G,I,D) \cdot \delta_{1 \rightarrow 2}(D) \cdot \delta_{3 \rightarrow 2}(G,I)$$

(Approaches are equivalent)
Message Passing: Belief Update

Belief-update Message Passing Algorithm

Procedure CTree-BU-Calibrate (
\[\Phi, \quad \text{// Set of factors} \]
\[T, \quad \text{// Clique tree over} \Phi \]
)
1. Initialize-CTree
2. \textbf{while} exists an uninformed clique in \(T \)
3. Select \((i-\j) \in E_T\)
4. BU-Message(i,j)
5. \textbf{return} \{\(\beta_i\)\}

Note: any arbitrary pair can be chosen without violating the correctness of the algorithm

Belief-update Message Passing Algorithm

The following are the implications (stated without proof here):
• Sum-Product and Belief-Update message passing are equivalent
• Belief-update message passing guaranteed to converge to the correct marginals
• Message schedule that guarantees convergence to the correct clique marginals in two passes:
 – Follow upward-downward pass schedule using any arbitrarily chosen root clique \(C_r \),
Constructing a Clique Tree

How do we construct a clique tree?
1. Through executing Variable Elimination
 • A clique C_i corresponds to a factor ψ_i
 • Undirected edge connects C_i and C_j when τ_i is used directly in the computation of ψ_j (or vice versa)
 • Cliques in clique tree are maximal cliques in the induced graph

2. Manipulating the graph directly
 1. Given a set of factors, construct the undirected graph \mathcal{H}_Φ
 2. Triangulate \mathcal{H}_Φ to construct a chordal graph \mathcal{H}^*
 3. Find cliques in \mathcal{H}^*, and make each one a node in a cluster graph
 4. Run the maximum spanning tree algorithm on the cluster graph to construct a tree

• Triangulation: constructing a chordal graph that subsumes an existing graph \mathcal{H}
• Minimum triangulation: largest clique in the resulting chordal graph has minimum size
• Finding the minimum triangulation is NP-hard – need to resort to heuristics

• Finding the maximal clique in a general graph is NP-hard
 – But for chordal graphs, this is easy (number of possible approaches)
• Finding edges in clique tree
 – Use maximum spanning tree algorithm
 – Nodes are the maximal cliques, edges have weight equal to $|C_i \cap C_j|$