Direct Manipulation & Interface Principles

Modern User Interfaces

Windows 1.0
Mac OS 1.0
Windows 3.0
Mac OS 7

1987
1981
1985
1992
1998
Anatomy of a WIMP interface

Windows, Icons, Menus, Pointers
Graphical User Interface

WIMP interface emulates existing work practices
Direct manipulation
Desktop metaphor

UI Elements

• Windows
• Icons
• Menus
• Buttons
• Sliders
• Input fields
• Links
• Sounds

All modern UI’s have these, though the implementation, look & feel, and behavior differs
Windows

• Modal vs. Modeless
 – Dialogue Windows
 – Toolbars
 – Status indicators

• Elements
 – Title
 – Window controls
 – Menu
 – Content
 – Frame

• Operations
 – Move
 – Resize
 – Stack
 – Close

More Window Properties

• Opacity/Transparency
• Stay-on-top
• Positional and size memory
• ???
Menus

• **Pull-down and toolbar menus**
 – Pull-down menus
 • Always available, standardized
 – Key board shortcuts
 – E.g., Ctrl-C important to support efficiency
 – Toolbars, iconic menus, and palletes
 – Offers actions on a displayed object
 – Pop-up menus
 – Appear on a display in response to a check or tap with a pointing device.

Menus (cont.)
Menus (cont.)

- **Menus for long lists**
 - Scrolling menus, dynamic menus, and fisheye menus
 - Scrolling menus display the first portion of the menu and an additional menu item, typically an arrow that leads to the next set of items in the menu sequence.
 - Adaptive menus
 - Fisheye menus display all of the menu items on the screen at once, but show only items near the cursor at full size.
Adaptive menus in Microsoft Office.

A font-selection menu lists the recently used fonts near the top of the menu (as well as in the full list), making it easier to quickly select the popular fonts.

Content Organization (cont.)

Menus (cont.)

• Two-dimensional menus
 – “Fast and vast” two-dimensional menus give users a good overview of the choices, reduce the number of required actions, and allow rapid selection.
Data Entry with Menus: Form Fill-in, Dialog Boxes, and Alternatives

- Novel design combining menus and direct manipulation
 - Pie menus
 - Marking menus
 - Flow menus
 - Toolglass/Magic Lense

Principles of Direct Manipulation

- Pointer as your virtual hand
- Mouse as your control into said world
- 2-dimensional (for the most part)
- Intuitive, natural

- Direct manipulation ≠ perfect analogue
Strengths of Direct Manipulation

- Natural analogue to how we interact with the real world
 - Ease in learning the system originally and in assimilating advanced features
 - Confidence in the capacity to retain mastery over time
 - Enjoyment in using the system
 - Desire to explore more powerful aspects of the system

Interface-Building

Visual Thinking and Icons
- To use direct manipulation, we need an icon (an image, picture, or symbol representing a concept, operation or file)

- Most Operating systems and programming environments
 - Provide default icons for common elements/tasks
 - Have strict guidelines about the design and use of graphical elements
 - Sometimes designing icons for abstract operations may be challenging
 - Some graphical elements may be heavily culturally dependent, or may not age well
Examples of Direct-Manipulation Systems:

WYSIWYG word processing

Examples of Direct-Manipulation Systems (cont.):

spreadsheet
Examples of Direct-Manipulation Systems (cont.)

The VisiCalc spreadsheet and its descendants
• VisiCalc users delighted in watching the program propagate changes across the screen.

• Some concepts can be difficult to convey here

• Some operations not as easy to accomplish graphically

Examples of Direct-Manipulation Systems (cont.)

Video games
• Nintendo Wii, Sony PlayStation, and Microsoft Xbox
• Field of action is visual and compelling
• Commands are physical actions whose results are immediately shown on the screen
• No syntax to remember
Examples of Direct-Manipulation Systems (cont.)

Discussion of Direct Manipulation

Problems with direct manipulation
• Spatial or visual representations can be too spread out
• Designs may force valuable information off of the screen
• Users must learn the graphical representations
• The visual representation may be misleading
• Typing commands with the keyboard may be faster
3D Interfaces

• “Pure” 3D interfaces have strong utility in some contexts, e.g., medical, product design. In other situations, more constrained interaction may actually be preferable to simplify interactions.

• “Enhanced” interfaces, better than reality, can help reduce the limitations of the real-world, e.g., providing simultaneous views.

• Avatars in multiplayer 3-D worlds

• First person games

3D Interfaces (cont.)

Challenges to effective 3D displays/interfaces

– Use occlusion, shadows, perspective, and other 3D techniques carefully.
– Minimize the number of navigation steps for users to accomplish their tasks.
– Keep text readable.
– Avoid unnecessary visual clutter, distraction, contrast shifts, and reflections.
– Simplify user movement.
– Prevent errors.
– Simplify object movement
– Organize groups of items in aligned structures to allow rapid visual search.
– Enable users to construct visual groups to support spatial recall.
Virtual and Augmented Reality

• Virtual reality breaks the physical limitations of space and allow users to act as though they were somewhere else
• Augmented reality shows the real world with an overlay of additional overlay
• Situational awareness shows information about the real world that surrounds you by tracking your movements in a computer model
• Augmented reality is an important variant
 – Enables users to see the real world with an overlay of additional interaction.

Virtual and Augmented Reality (cont.)

• Successful virtual environments depend on the smooth integration of:
 – Visual Display
 – Head position sensing
 – Hand-position sensing
 – Force feedback
 – Sound input and output
 – Other sensations
 – Cooperative and competitive virtual reality