1: Query Processing

Consider the natural join of relations Student(Name, Project) and Prof(Name, Project) on attribute Project, i.e., Student.Project = Prof.Project. The size of relation Student is 2,000 blocks and the size of relation Prof is 1,000 blocks. Assume these relations are not sorted by any of their attributes.

1. Assume that we have 201 blocks available in memory buffer, i.e., M=201. Check whether it is possible to join these relations using the sort-merge join algorithm and compute the cost of this join. Repeat the aforementioned steps for the optimized sort-merge algorithm.

Solution:
Because the size of each relation is less than or equal to M^2, we can use sort-merge join.

The cost of this join will be $5 \times (B(\text{Student}) + B(\text{Prof})) = 5 \times (2000 + 1000) = 15000$.

Because $B(\text{Student}) + B(\text{Prof}) = 3000$ is less than or equal to M^2, we can also use optimized sort-merge join algorithm to join these relations. The cost will be $3 \times (B(\text{Student}) + B(\text{Prof})) = 3 \times (2000+1000) = 9000$.

2. Describe a situation where the aforementioned sort-merge join algorithms may need additional disk I/O accesses.

Solution: If all students and professor work on one project, we have to join all tuples in these relations. In other words, we have to join the tuples in each run of Student with the tuples in every run of Prof. Hence, sort-merge algorithms need more I/O accesses for each run than the numbers given in the previous part of the problem. The cost will be close to a nested-loop join and almost equal to $B(\text{Student}) \times B(\text{Prof})$.

2: Query Processing

Consider the following relational schema.

Student (StudentID, Name)
HealthInsurance (InsuranceID, DateStarted, StudentID)

Assume that number of blocks in relation Student is 10,000 and the number of blocks in relation HealthInsurance is 300. We do not have any indexes on these relations. We like to join these relations on StudentID.

1. If we can have 12,000 blocks in main memory, i.e., $M = 12,000$, explain what is the fastest join algorithm to join Student and HealthInsurance on StudentID and analyze its cost?

Solution:
Because we can fit both relations in main memory, we may use an internal memory join algorithms to join them. We may pick the internal memory version of nested-loop, sort-merge, or hash-join as they involve equal number of I/O accesses. The cost of join will be $B(\text{HealthInsurance}) + B(\text{Student}) = 10300$ disk I/Os. Note that we do not care about the cost of memory operations when analyzing the cost of query processing algorithms.
2. If we can fit 20 blocks in main memory, i.e., M = 20, what is the fastest join algorithm to join these relations? Analyze its cost.

Solution:
Hash-join and optimized sort-merge join are the fastest algorithms in the given setting and have equal costs. However, to apply optimized sort-merge join, we should have \(B(\text{HealthInsurance}) + B(\text{Student}) \leq M^2 \). As \(B(\text{HealthInsurance}) + B(\text{Student}) \) is not less than or equal to 400, we cannot use optimized sort-merge algorithm. Hash-join algorithm, however, requires smaller amount of main memory. Because the smaller relation is HealthInsurance, we need to have \(B(\text{HealthInsurance}) \leq M^2 \) or \(B(\text{HealthInsurance}) \leq 400 \) to perform this join using hash-join algorithm. As we have \(B(\text{HealthInsurance}) \leq 400 \), we can use hash-join algorithm for the join. The cost of hash-join for this join is \(3 \times B(\text{HealthInsurance}) + 3 \times B(\text{Student}) = 30900 \) number of I/O access.

4: Query Optimization

Consider the following relational schema and SQL query:
Suppliers(sid, sname, address, category)
Supply(sid, pid)
Parts(pid, pname, brand)

SELECT S.sname, P.pname
FROM Suppliers S, Parts P, Supply Y
WHERE S.sid = Y.sid AND Y.pid = P.pid
1. Give two examples of join orderings that System R will not consider.

Solution:
System R optimizer does not consider join orderings that require the computation of cross-products to calculate this join. Further, it considers only left-deep joins. The followings are two join orderings that are not left-deep and/or contain Cartesian product.

• \(P \bowtie (S \bowtie Y) \) (right-deep join)
• \((S \bowtie P) \bowtie Y \) (Cartesian product)

2. Enumerate all joins orderings that System R optimizer considers.

Solution:
System R optimizer does not consider join orderings that require the computation of cross-products to calculate this join. Further, it considers only left-deep joins. Thus, it considers the following join orderings:

• \((S \bowtie Y) \bowtie P \)
• \((Y \bowtie S) \bowtie P \)
• \((P \bowtie Y) \bowtie S \)
• \((Y \bowtie P) \bowtie S \)

5: Query Optimization

Consider relations \(R(A,B) \) and \(S(B,C) \). Assume that \(R \) contains 2,000 tuples, and that \(S \) contains 5,000 tuples. We want to compute the equi-join \(R \bowtie S \) over attribute \(B \).

1. Without any further assumptions, what is the maximum number of tuples that the resulting relation may contain?

Solution:
The join will have the maximum number of tuples if all values of attribute \(B \) in \(R \) and \(S \) have equal values, therefore, the maximum number of tuples is \(2000 \times 5000 = 10,000,000 \).

2. Now assume that we know that the number of distinct values of \(B \) in \(R \) is 500. What is now a reasonable estimate on the size of join?

Solution: \(2000 \times 5000 / 500 = 20,000 \).

3. Finally, assume we know that \(B \) is a primary key in \(S \). What is now a reasonable estimate on the size of join?

Solution:
If \(B \) is the primary key of \(S \), it will have 5,000 distinct values in \(S \). Hence, the size of join will be:
\(2000 \times 5000 / \max(500,5000) = 2,000 \).