The Chow-Liu Algorithm

The Goal

Given a finite set of samples in a dataset, estimate the underlying n-dimensional discrete probability distribution using a tree model.
Trees

What is a tree?

• The variables in the dataset are the vertices V
• There are edges in the set E that connect the vertices
• We’ll assume the edges are undirected for now
• A graph (V,E) is a tree if it is connected and has no cycles

Technical point: We will allow our trees to be a forest i.e. the tree model we learn may be disconnected
Trees

- In a directed tree, we pick a vertex as the root.
- We then turn the edges into directed edges and orient the edges away from the root.
- This means that each vertex has at most one parent (but may have more than one child).
Tree Models

Notation:

• \mathbf{x} (as in bold x) is an n-dimensional vector i.e.
 $\mathbf{x} = (x_1, x_2, ..., x_n)$

• Each x_i in \mathbf{x} is a variable

• $P(\mathbf{x})$ is a joint probability distribution of n
 discrete variables $x_1, x_2, ..., x_n$
Tree Models

• We want to approximate the true joint probability distribution using tree models of the form:

\[P_t(x) = \prod_{i=1}^{n} P(x_i | x_{\pi(i)}) \]

• \(\pi(i) \) means “parent of variable \(i \)”

• If \(i \) is the root then \(\pi(i) \) is the empty set:
\[P(x_i | x_{\pi(i)}) = P(x_i) \]
Tree Models

\[P_t(x) = \prod_{i=1}^{n} P(x_i | x_{\pi(i)}) \]

- Tree models consider the pairwise relationships between variables in the dataset.
- It is an improvement over just treating the variables independently of each other.
Closeness of approximation

• Let $P(\mathbf{x})$ and $P_t(\mathbf{x})$ be two probability distributions of n discrete variables $\mathbf{x} = (x_1, x_2, \ldots, x_n)$.

• Let

$$KL(P, P_t) = \sum_x P(\mathbf{x}) \log \frac{P(\mathbf{x})}{P_t(\mathbf{x})}$$

Note: This summation is over all configurations of (x_1, x_2, \ldots, x_n)

The formula for $KL(P, P_t)$ is called the Kullback-Leibler divergence (or KL divergence for short)
Kullback-Leibler Divergence

• We’ll rewrite the KL divergence as:

\[KL(P, P_t) = \sum_x P(x) \log P(x) - \sum_x P(x) \log P_t(x) \]

• The first term doesn’t depend on \(P_t \).
• The second term is known as the cross-entropy between \(P \) and \(P_t \).
• Properties of KL divergence:

 - \(KL(P, P_t) \geq 0 \)

 - \(KL(P, P_t) = 0 \) if and only if \(P(x) \equiv P_t(x) \) for all \(x \)
A Minimization Problem

Given:

• An nth-order probability distribution $P(x_1, x_2, ..., x_n)$ with x_i being discrete

• T_n - The set of all possible first-order dependence trees

Find the optimal first-order dependence tree τ such that $\text{KL}(P, P_\tau) \leq \text{KL}(P, P_t)$ for all $t \in T_n$.

Exhaustive Search

• Why not just search over all possible trees?
• Not feasible -- there are $n^{(n-2)}$ possible trees with n vertices (from Cayley’s formula)
• We will turn the search into a maximum weight spanning tree (MWST) problem
Mutual Information

- Define the mutual information $I(x_i, x_j)$ between two variables x_i and x_j to be:

$$I(x_i, x_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \left(\frac{P(x_i, x_j)}{P(x_i)P(x_j)} \right)$$

- Key insight: a probability distribution of tree dependence $P_t(x)$ is an optimum approximation to $P(x)$ iff its tree model has maximum weight

- Proof to follow
Proof

$$KL(P, P_t) = \sum_x P(x) \log P(x) - \sum_x P(x) \sum_{i=1}^n \log P(x_i | x_{\pi(i)})$$

$$= \sum_x P(x) \log P(x) - \sum_x P(x) \sum_{i=1, \neq \text{root}}^n \log \frac{P(x_i, x_{\pi(i)})}{P(x_{\pi(i)})}$$

$$= \sum_x P(x) \log P(x) - \sum_x P(x) \sum_{i=1, \neq \text{root}}^n \log \frac{P(x_i, x_{\pi(i)})}{P(x_i)P(x_{\pi(i)})}$$

$$- \sum_x P(x) \sum_{i=1}^n \log P(x_i)$$
Proof (continued)

Note that: \(- \sum_{x} P(x) \log P(x_i) = - \sum_{x_i} P(x_i) \log P(x_i)\)

To see this, suppose \(x = (x_1, x_2)\), let all variables are binary, let \(i = 1\)

\[- \sum_{x} P(x) \log P(x_i) \]

\[= -[P(x_1 = 0, x_2 = 0) \log P(x_1 = 0) + P(x_1 = 0, x_2 = 1) \log P(x_1 = 0) + P(x_1 = 1, x_2 = 0) \log P(x_1 = 1) + P(x_1 = 1, x_2 = 1) \log P(x_1 = 1)]\]

\[= -[P(x_1 = 0) \log P(x_1 = 0) + P(x_1 = 1) \log P(x_1 = 1)]\]

\[= - \sum_{x_1} P(x_1) \log P(x_1) = - \sum_{x_i} P(x_i) \log P(x_i)\]
Proof (continued)

In the same way:

$$
\sum_{x} P(x) \log \frac{P(x_i, x_{\pi(i)})}{P(x_i)P(x_{\pi(i)})} \\
= \sum_{x_i, x_{\pi(i)}} P(x_i, x_{\pi(i)}) \log \frac{P(x_i, x_{\pi(i)})}{P(x_i)P(x_{\pi(i)})} = I(x_i, x_{\pi(i)})
$$
Proof (continued)

One more piece of notation:

\[H(x) = -\sum_x P(x) log P(x) \]

\[H(x_i) = -\sum_{x_i} P(x_i) log P(x_i) \]

Substituting the expressions above and from pg 12 into the last line of pg 13:

\[KL(P, P_t) = -\sum_{i=1}^n I(x_i, x_{\pi(i)}) + \sum_{i=1}^n H(x_i) - H(x) \]
Proof

\[KL(P, P_t) = - \sum_{i=1}^{n} I(x_i, x_{\pi(i)}) + \sum_{i=1}^{n} H(x_i) - H(x) \]

Mutual information is always \(\geq 0 \)

Independent of the dependence tree

Minimizing \(I(P, P_t) \) is the same as maximizing the total branch weight:

\[\sum_{i=1}^{n} I(x_i, x_{\pi(i)}) \]
The algorithm

• First calculate all $n(n-1)/2$ pairwise mutual information measures
• Use Kruskal’s algorithm to construct maximum weight spanning tree:
 – Construct tree one edge at a time, in decreasing order of the weights
 – If all weights are > 0, you get one connected component
 – Running time is $O(n^2)$ for n variables because you have to consider all $n(n-1)/2$ edges
Estimation

• But in order to calculate mutual information $I(x_i, x_j)$, you need the probability distribution $P(x)$

• Need to estimate the mutual information from a finite set of samples using maximum likelihood estimation
Estimation

Suppose you are given \(s \) independent samples \(x^1, x^2, \ldots, x^s \) of a discrete variable \(x \). Each sample is an \(n \)-component vector i.e. \(x^k = (x^k_1, x^k_2, \ldots, x^k_n) \).

Define:

\[n_{uv}(i, j) = \# \text{ of samples with } x_i = u \text{ and } x_j = v \]

\[f_{uv}(i, j) = \frac{n_{uv}(i, j)}{\sum_{u, v} n_{uv}(i, j)} \]

\[f_u(i) = \sum_v f_{uv}(i, j) \]

Maximum Likelihood Estimator for \(P(x_i = u, x_j = v) \)

Maximum Likelihood Estimator for \(P(x_i = u) \)
Estimation

Calculate:

\[\hat{I}(x_i, x_j) = \sum_{u,v} f_{uv}(i, j) \log \frac{f_{uv}(i, j)}{f_u(i)f_v(j)} \]

Use \(\hat{I}(x_i, x_j) \) in Kruskal’s algorithm instead of \(I(x_i, x_j) \)
The entire algorithm

1. Compute marginal counts \(f_u(i) \) and pairwise counts \(f_{uv}(i,j) \)
2. Compute mutual information \(\hat{I}(x_i, x_j) \) for all pairs \(x_i \) and \(x_j \)
4. Set the parameters in the CPTs for each node to be their maximum likelihood estimates:
 \[
P(x_i \mid x_{\pi(i)}) = \frac{f_{uv}(i, \pi(j))}{f_u(i)}
 \]
The entire algorithm

1. Compute marginal counts $f_u(i)$ and pairwise counts $f_{uv}(i,j)$
2. Compute mutual information $\hat{I}(x_i, x_j)$ for all pairs x_i and x_j

Steps 1-3 dominate the complexity: they all take $O(n^2)$ time
References

• Chow, C. K. and Liu, C. N. “Approximating Discrete Probability Distributions with Dependence Trees”.