Markov Models

OSU CS536 Probabilistic Graphical Models

Scott Sanner
Oregon State University
Markov Models (or Markov Chains)

- At each time step, probabilistically transition from current state to next state ($S = \{s_1, s_2, \ldots, s_n\}$)
- Finite State Machine (FSM) view for $n=5$:
Markov Models

• The graphical model view for t steps:

$$P(S_{t+1} | S_t) = P(S_t | S_{t-1})$$

– Note: for $t = \infty$, an infinite graphical model!

• Or assuming transition stationarity, just:
Markov Models

• The Dynamic Bayes Net (DBN) view:
 – State factors into variables: X_1, X_2, \ldots, X_k
 – Capture transition independences

\[
P(x_{1}^{t+1}, x_{2}^{t+1}, \ldots, x_{k}^{t+1} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{k}^{t}) = \Pi \ldots
\]
Transition Matrix

- Represent $P(s^{t+1}|s^t)$ as transition matrix:

$$T = \begin{bmatrix} P(s_{j}^{t+1}|s_{i}^{t})
\end{bmatrix}$$

Do rows or cols $\Sigma=1$?
Transition Probabilities

• Formally
 – Define state set \(S^t = \{s_1, s_2, ..., s_n\} \); \(\forall t \)
 – Define transition matrix \(T_{ij}^t = P(S_i^{t+1}|S_j^t) \); \(\forall t \)

• Properties of \(T_{ij} \)
 – *Stationary*: \(T_{ij}^t = T_{ij}^{t-1} \) OR \(P(S^{t+1}|S^t) = P(S^t|S^{t-1}); \forall t \)
 – *Irreducible*: Possible to get from any \(s_i \) to \(s_j \)
 – *Aperiodic*: Time to return has periodicity = 1
 – *Transient*: Positive probability of not returning to state
 – *Recurrent*: Not transient
 – *Ergodic*: Aperiodic and (positive) recurrent

Examples of each?
Distribution at Time t

- Given $P(s^0)$, what is $P(s^t)$?

- Use var. elim. to marginalize over intermediate time steps

 $P(s^t) = \sum_{s_1, \ldots, s_{t-1}} P(s^0) \prod_{i=0}^{t-1} P(s^{i+1}|s^i)$

- Or let Ps^0 & Ps^t be column vectors…

 - Then simply: $Ps^t = (T^{^\dagger}) Ps^0$

 - Note: Intimate connection between matrix ops and var. elim.
 - When $P(s^{i+1}|s^i)$ factors as a DBN…
 capture many efficiencies of var. elim. via sparse matrix ops

If no evidence after time t, all factors for $t+1$ and after marginalize out
Stationary Distribution

- Stationary Distribution π at $t=\infty$
 - $\pi = (T^\infty) P s^0$
 - If T ergodic & irreducible, Ps^0 irrelevant
 - Reaches *unique* steady-state distribution: $\pi = T \pi$
 - So $\pi=$any row of T^∞
 - Can solve via eigenvector analysis (note: $\lambda=1$)
 - Related to (Krylov) iterated eigenvector computation
 - Or use fixed point to solve linear system
 - $T\pi - \pi = 0 \Rightarrow \pi'T' - \pi'=0 \Rightarrow \pi' (T' - I) = 0$
 s.t. constraints on π
 - Can solve linear system via matrix inversion

Why? What are they?
Markov Model Applications

• Simple theory, ingenious applications:
 – n^{th}-order Markov models
 • Relax Markovian assumption to previous n states
 • Used in text and speech processing
 – N-grams for predicting next word occurrence
 http://nbviewer.ipython.org/gist/yoavg/d76121dfde2618422139
 – Colocation identification
 – Dasher for text input, try it in your web browser
 – More generally
 • Physics (states of systems)
 • Queuing theory (random entries and exits)
 • Economics, Biology, Chemistry, etc…
 • Google!
Google PageRank Example

• Very beautiful use of Markov Models

• Model of web browsing:
 – Probabilistically take link with \(\sim 1/k \) chance if \(k \) links
 – Small chance of random transition

• Stationary distribution \(\pi \) gives PageRank!
 – Measure of “authority”

How to compute on web scale?

Hint: Use iterative method; how would you compute \(T^{256} \)?
Note on Markovian Assumption

• State is only dependent on the preceding N states
 – Nth-order Markov (often $N=1$)

• Transition probabilities do not change over time: Stationary

• A non-stationary process would be “arrivals at the ground floor elevator in an office building” if time were not in state
 – But augmenting time in the state can make it Markovian
 – In general most processes can be 1st-order Markovian with a properly augmented state
 • How to convert a N-th order Markov Model to 1st-order?

• But state may not always be directly observable...
MCMC

• Markov Chains are also critical for probabilistic inference via MCMC
 – nb. Markov Chain Monte Carlo

• Idea:
 – Given joint over $P(X_1,\ldots,X_n)$
 – Define transition: $T(X_1,\ldots,X_n,X_1',\ldots,X_n')$
 • Which satisfies “detailed balance”
 – Then $\prod (X_1,\ldots,X_n)$ for T is $P(X_1,\ldots,X_n)$!
MCMC Methods

• Three commonly used MCMC techniques:
 – Gibbs sampling
 • Provably satisfies detailed balance
 – Metropolis-Hastings
 • Need to design a symmetric proposal to satisfy detailed balance
 – Hamiltonian Monte Carlo
 • Provably satisfies detailed balance