OSU CS536

Relational Dynamical Influence Diagram Language (RDDL)

Scott Sanner
What is RDDL?

- Relational Dynamic Influence Diagram Language
 - Relational
 [DBN + Influence Diagram]
 - Everything is a fluent!
 • states
 • observations
 • actions
 - Conditional distributions are *probabilistic programs*
Wildfire Domain (new in 2014)

- Contributed by Zhenyu Yu (School of Economics and Management, Tongji University)
Wildfire in RDDL

cpbs {

 burning(?x, ?y) =
 if (put-out(?x, ?y))
 then false
 else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y))
 then Bernoulli(1.0 / (1.0 + \exp[4.5 - (\sum_{?x2: x_pos, ?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2)))))
 else
 burning(?x, ?y); // State persists

 out-of-fuel(?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);

};

reward =

 [\sum_{?x: x_pos, ?y: y_pos} [COST_CUTOUT*cut-out(?x, ?y)]]
+ [\sum_{?x: x_pos, ?y: y_pos} [COST_PUTOUT*put-out(?x, ?y)]]
+ [\sum_{?x: x_pos, ?y: y_pos} [COST_NONTARGET_BURN*[burning(?x, ?y) ^ ~TARGET(?x, ?y)]]]
Facilitating Model Development by Writing Simulators: Relational Dynamic Influence Diagram Language (RDDL)

// Store alive-neighbor count for each
count-neighbors(?x,?y) =
 KronDelta(sum_{?x2 : x_pos, ?y2 :}
 [NEIGHBOR(?x,?y,?x2,?y2]

// Determine whether
alive'(?x,?y) = if (in
 ^ (count_neigh
 | [~alive(?x
 ^ (count_neigh
 | set(?x,?y)
 when Bernoulli(PROB_R
 else Bernoulli(1.0 -

Automatic Translation

Write probabilistic programs for transitions
RDDLSim Software

Open source & online at

https://github.com/ssanner/rddlsim