1. The continuous-time signal
\[x_c(t) = \cos(4000\pi t) \]

is sampled with a sampling period \(T \) to obtain the discrete-time signal
\[x[n] = \cos\left(\frac{\pi n}{3}\right) \]

(a) Determine a choice for \(T \) consistent with this information.
(b) Is your choice for \(T \) in part (a) is unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.

2. (a) Continuous signal
\[x_c(t) = \sin(20\pi t) + \cos(40\pi t) + \sin(60\pi t) \]

is used as the input for an ideal C/D converter as shown in Fig. 1 with the sampling period \(T = \frac{1}{100} \text{sec.} \)

Find the resulting discrete-time signal \(x[n] \).

(b) The continuous-time signal
\[x_c(t) = \frac{\sin(10\pi t)}{10\pi t} \]

is sampled with a sampling period \(T \) to obtain the discrete-time signal
\[x[n] = \frac{\sin\left(\frac{\pi n}{T}\right)}{\frac{\pi n}{T}} \]

i. Determine a choice for \(T \) consistent with this information.
ii. Is your choice for \(T \) in part (i) is unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.
3. For the system shown in Fig. 2, $X(e^{j\omega})$, the Fourier Transform of the input signal $x[n]$ is shown in Fig. 3.

For each of the following choices of L and M, specify the maximum possible value of ω_0 such that $\tilde{X}_d(e^{j\omega}) = aX(e^{j\frac{M\omega}{L}})$ for some constant a.

(a) $M=3$, $L=2$
(b) $M=2$, $L=3$
4. Fig. 4 shows a continuous-time filter that is implemented using an LTI discrete-time filter ideal low pass filter with frequency response over $-\pi \leq \omega \leq \pi$ as

$$H(e^{j\omega}) = \begin{cases}
1 & |\omega| < \omega_c, \\
0 & \omega_c < |\omega| \leq \pi
\end{cases}$$

![Figure 4: system for problem 4](image)

(a) If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Fig. 5 and $\omega_c = \frac{\pi}{5}$, sketch and label $X(e^{j\omega}), Y(e^{j\omega}), Y_c(j\Omega)$ for $\frac{1}{T} = 2 \times 10^4$

![Figure 5: $X(e^{j\omega})$, the Fourier Transform of the input signal $x[n]$](image)

(b) For $\frac{1}{T} = 6 \times 10^3$ and for input signals $x_c(t)$, whose spectra are bandlimited to $|\Omega| < 2\pi \times 5 \times 10^3$ (but otherwise unconstrained), what is the maximum choice of the cutoff frequency ω_c of the filter $H(e^{j\omega})$ for which no aliasing occurs. For the maximum choice of ω_c, specify $H_c(j\Omega)$

5. Consider the discrete-time system shown in Fig. 6

![Figure 6: discrete-time system in problem 5](image)

where

i. L is an integer

ii. $x_c[n] = \begin{cases} x[n] & n = kL, \; k \text{ is integer}, \\
0 & \text{otherwise}
\end{cases}$
iii $y[n] = y[nL]$

iv $H(e^{j\omega}) = \begin{cases} L & |\omega| < \frac{\pi}{4}, \\ 0 & \frac{\pi}{4} < |\omega| \leq \pi \end{cases}$

(a) Assume that $L=2$ and that $X(e^{j\omega})$, the DTFT of $x[n]$, is real and is shown in Fig. 7. Make an appropriately labeled sketch of $X_e(e^{j\omega}), Y(e^{j\omega}), Y_e(e^{j\omega})$. Be sure to clearly label amplitudes and frequencies.

(b) For $L=2$, the overall system is LTI. Determine and sketch the magnitude of the frequency response of the overall system $|H_{eff}(e^{j\omega})|$.

(c) For $L=6$, the overall system is still LTI. Determine and sketch the magnitude of the frequency response of the overall system $|H_{eff}(e^{j\omega})|$.

6. For the system shown in Fig. 8 find an expression for $y[n]$ in terms of $x[n]$. Simplify the expression as much as possible. Each of the three blocks (upsampling, interp., and downsampling) correspond to the system in Fig. 2 and the interpolator is the lowpass filter in Fig. 2.

Figure 7: $X(e^{j\omega})$, the Fourier Transform of the input signal $x[n]$

Figure 8: Discrete-time system for problem 6