1. Suppose that we wish to design an FIR lowpass filter with the following specifications:

\[0.92 < H(e^{j\omega}) < 1.02 \quad 0 \leq |\omega| \leq 0.63\pi, \]

\[|H(e^{j\omega})| < 0.1 \quad 0.65\pi \leq |\omega| \leq \pi \]

by applying a window to the impulse response \(h_d[n] \) for the ideal discrete-time lowpass filter with cutoff \(\omega_c = 0.64\pi \).

(a) For each of the following windows: Hamming, Hanning, and Bartlett modify the MATLAB code 'hw8_prob1.m' to determine the minimum value of \(M \) that satisfies the aforementioned specification.

(b) To support your answer, for each window plot the frequency response of the filter you generated in part (a). Show that with \(M - 1 \) the constraints are not satisfied.

2. Consider a Type I Chebyshev lowpass filter with the following 4th order system function

\[H_{lp}(Z) = \frac{0.0042(1 + Z^{-1})^4}{(1 - 1.4424Z^{-1} + 0.5851Z^{-2})(1 - 1.2973Z^{-1} + 0.8229Z^{-2})} \]

to meet the specifications

\[0.95 \leq |H_{lp}(e^{j\theta})| \leq 1.05 \quad 0 \leq |\theta| \leq 0.25\pi \]

\[|H_{lp}(e^{j\theta})| \leq 0.1 \quad 0.35\pi \leq |\theta| \leq \pi \]

The frequency response of which is shown in the figure

(a) Transform this filter into a highpass filter with passband cutoff frequency \(\omega_p = 0.6\pi \) using

\[H(z) = H_{lp}(Z)|_{Z^{-1} \rightarrow z^{-1-\alpha^{-1}}} \]

and \(\alpha = -\frac{\cos(\frac{\theta_p + \omega_p}{2})}{\cos(\frac{|\theta_p - \omega_p|}{2})} \)
(b) Plot the magnitude response of the new highpass filter.

3. Consider a continuous-time low-pass filter $H_c(s)$ with passband and stopband specifications

$$1 - \delta_1 \leq |H_c(j\Omega)| \leq 1 + \delta_1 \quad \Omega \leq \Omega_p$$

$$|H_c(j\Omega)| \leq \delta_2 \quad \Omega_s \leq |\Omega|$$

This filter is transformed to a low-pass discrete-time filter $H_1(z)$ by the transformation

$$H_1(z) = H_c(s)\mid_{s = \frac{1-z^{-1}}{1+z^{-1}}}$$

and the same continuous-time filter is transformed to a high-pass discrete-time filter by the transformation

$$H_2(z) = H_c(s)\mid_{s = \frac{1+z^{-1}}{1-z^{-1}}}$$

(a) Determine a relationship between the passband cutoff frequency $|\Omega_p|$ of the continuous-time low-pass filter and the passband cutoff frequency ω_{p1} of the discrete-time low-pass filter.

(b) Determine a relationship between the passband cutoff frequency $|\Omega_p|$ of the continuous-time low-pass filter and the passband cutoff frequency ω_{p2} of the discrete-time high-pass filter.

(c) Determine a relationship between the passband cutoff frequency ω_{p1} of the discrete-time low-pass filter and the passband cutoff frequency ω_{p2} of the discrete-time high-pass filter.

(d) The network in the figure depicts an implementation of the discrete-time low-pass filter with system function $H_1(z)$. The coefficients A, B, C and D are real. How should these coefficients be modified to obtain a network that implements the discrete-time high-pass filter with system function $H_2(z)$?

4. Let the $h_d[n]$ denote the impulse response of an ideal desired system with corresponding frequency response $H_d(e^{j\omega})$, and let $h[n]$ and $H(e^{j\omega})$ denote the impulse response and frequency response, respectively, of an FIR approximation to the ideal system. Assume that $h[n] = 0$ for $n < 0$ and $n > M$. We wish to choose the $(M + 1)$ samples of the impulse response so as to minimize the mean-squared error of the frequency response defined as

$$e^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_d(e^{j\omega}) - H(e^{j\omega})|^2 d\omega$$

(a) Use Parseval’s relation to express the error function in terms of the sequences $h_d[n]$ and $h[n]$

(b) Using the result of part (a), determine the values of $h[n]$ for $0 \leq n \leq M$ that minimizes e^2

(c) The FIR filter determined in part (b) could have been obtained by a windowing operation. That is, $h[n]$ could have been obtained by multiplying the desired infinite-length sequence $h_d[n]$ by a certain finite-length sequence $w[n]$. Determine the necessary window $w[n]$ such that the optimal impulse response is $h[n] = w[n]h_d[n]$.
