1 Review From Previous Lecture

1.1 Typical Set Properties

- Individual probability:
 \[x \in T^n_\varepsilon \Rightarrow -nH(X) - n\varepsilon \leq \log p(x) \leq -nH(X) + n\varepsilon \]

- Total Probability:
 \[P(x \in T^n_\varepsilon) > 1 - \varepsilon, \quad \text{for } n > N_\varepsilon \]

- Size:
 \[(1 - \varepsilon)2^{n(H(X) - \varepsilon)} < |T^n_\varepsilon| \leq 2^{n(H(X) + \varepsilon)} \]

1.2 Asymptotic Equipartition Principle

Theorem 1.1 For any \(\varepsilon \), and \(n > N_\varepsilon \), almost any event is almost equally surprising.

\[P(x \in T^n_\varepsilon) > 1 - \varepsilon, \quad \text{for } n > N_\varepsilon \]

Figure 1: Typical Set
From the Figure 1, we can see that a typical set can be small compared to the set of all the possible sequence, but it contains almost all the probability mass.

1.3 Source Coding and Data Compression

- $x \in T^n_{\varepsilon}$: "0" + at most $1 + n(H(X) + \varepsilon)$ bits.
- $x \notin T^n_{\varepsilon}$: "1" + at most $1 + n \log |X|$ bits.
- $L_n \leq (1 - \varepsilon)(1 + n(H(X) + \varepsilon)) + \varepsilon(1 + n \log |X|) = n(H(X) + \varepsilon + \varepsilon \log |X| + \frac{2}{n})$

2 Typical Set

2.1 Choice of N_{ε}

What N_{ε}, to ensure that $P(x^n \in T^n_{\varepsilon}) > 1 - \varepsilon$?

Answer: From Weak Law of Large Number (WLLN), suppose we have

$$Var(-\log p(x_i)) = \sigma^2$$

then for any n and ε,

$$\varepsilon^2 P(|\frac{1}{n}\sum_i - \log p(x_i) - H(X)| > \varepsilon) \leq \frac{\sigma^2}{n} \quad \text{(according to Chevyshev inequality)}$$

if we choose $N_{\varepsilon} = \sigma^2 \varepsilon^{-3}$,

$$P(x \notin T^n_{\varepsilon}) \leq \frac{\sigma^2}{n\varepsilon^2}$$

$$\Rightarrow P(x \in T^n_{\varepsilon}) \geq 1 - \frac{\sigma^2}{n\varepsilon^2}$$

if $N_{\varepsilon} = \sigma^2 \varepsilon^{-3}$, then we have for $n > N_{\varepsilon}$,

$$P(x \in T^n_{\varepsilon}) \geq 1 - \varepsilon$$

for this choice of $N_{\varepsilon} = \sigma^2 \varepsilon^{-3}$,

$$-nH(X) - \sigma^2 \varepsilon^{-2} \leq \log p(x) \leq -nH(X) + \sigma^2 \varepsilon^{-2}$$

Within the typical set, the probability of a typical sequence can vary up to by a factor of $2\sigma^2 \varepsilon^{-2}$.
2.2 Smallest High Probability Set

- T_n^ε is a small subset of X^n containing most of the probability mass.

- The way we show this is to show that if we pick a set $S(n)^\varepsilon$, where $|S(n)^\varepsilon| < 2^{n(H(X) - 2\varepsilon)}$, then $P(x \in S(n)^\varepsilon)$ (when ε is small)

\[
P(x \in S(n)) = P(x \in S(n)^\varepsilon \cap T_n^{\varepsilon}) + P(x \in S(n)^\varepsilon \cap \bar{T}_n^{\varepsilon})
\]

\[
< \frac{|S(n)^\varepsilon|}{p(x \in T_n^{\varepsilon})} + P(x \notin T_n^{\varepsilon})
\]

\[
< 2^{n(H(X) - 2\varepsilon)} 2^{-n(H(X) - \varepsilon)} + \varepsilon
\]

\[
= 2^{-n\varepsilon} + \varepsilon < 2\varepsilon
\]

(for $n > N_\varepsilon$)

2.3 Summary for Typical Set

- Typical Set
 - Individual probability:

\[
\mathbb{P}(x \in T_n^{\varepsilon}) \Rightarrow -nH(X) - n\varepsilon \leq \log p(x) \leq -nH(X) + n\varepsilon
\]

 - Total Probability:

\[
P(x \in T_n^{\varepsilon}) > 1 - \varepsilon, \text{ for } n > N_\varepsilon = \sigma^2\varepsilon^{-3}
\]

 - Size:

\[
(1 - \varepsilon)2^{n(H(X) - \varepsilon)} \leq |T_n^{\varepsilon}| \leq 2^{n(H(X) + \varepsilon)}
\]

- No other high probability set can be much smaller than T_n^{ε}.

- Asymptotic equipartition principle: Almost all event sequences are equally surprising.

3 Source and Channel Coding

![Source and Channel Coding](image)

The input could be raw image or raw video. Common compression format for raw image would be JPEG. MPEG is a common compression format for raw video.
• Source Coding
 Compress data to remove redundancy.

• Channel Coding
 Add redundancy to protect against channel errors.

3.1 Discrete Memoryless Channel (D.M.C.)

![Simple communication system diagram](image)

- Discrete input, discrete output

 \[x \in \mathcal{X}, \quad y \in \mathcal{Y} \]

- Channel matrix \(Q \)

 For entry \(ij \) in the matrix \(Q \), we have

 \[Q_{ij} = P(Y = y_j | X = x_i) \]

 and

 \[P(Y = y_i) = P(X = x_i)P(Y = y_j | X = x_i) \]

 or

 \[p_Y = Q^T p_X \] (Think of this as in matrix form)

 where \(Q \in \mathbb{R}^{m \times n} \), \(p_Y = [y_1 \ y_2 \ \cdots \ y_n]^T \), and \(p_X = [x_1 \ x_2 \ \cdots \ x_m]^T \), also the sum of each row of \(Q = 1 \); i.e., \(\sum_j Q_{ij} = 1 \)

- Memoryless

 \[p(y_n | x^{(n)}, y^{(n-1)}) = p(y_n | x_n) \]

 where \(y^{(n-1)} = (y_1, y_2, \cdots, y_{n-1}) \)
3.2 Binary Channels

3.2.1 Binary Symmetric Channel

In binary symmetric channel, $x = [0, 1], y = [0, 1]$. The channel characteristic is shown in Figure 4.

From Figure 4, we could derive the following Table 1.

<table>
<thead>
<tr>
<th>Y</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1 - p$</td>
<td>p</td>
</tr>
<tr>
<td>1</td>
<td>p</td>
<td>$1 - p$</td>
</tr>
</tbody>
</table>

Table 1: Binary Symmetric Channel Characteristic

From Table 1, we could easily find that $Q = \begin{pmatrix} 1 - p & p \\ p & 1 - p \end{pmatrix}$.

3.2.2 Binary Erasure Channel

In binary erasure channel, $x = [0, 1], y = [0, ?, 1]$. The channel characteristic is shown in Figure 5.

From Figure 5, we could derive the following Table 2.
Table 2: Binary Erasure Channel Characteristic

From Table 2, we could easily find that \(Q = \begin{pmatrix} 1 - p & p & 0 \\ 0 & p & 1 - p \end{pmatrix} \).

3.2.3 Z Channel

In Z channel, \(x = [0, 1], y = [0, 1] \). The channel characteristic is shown in Figure 6.

![Figure 6: Diagram of Z Channel](image)

From Figure 6, we could derive the following Table 3.

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 - p</td>
<td>p</td>
</tr>
<tr>
<td>1</td>
<td>p</td>
<td>1 - p</td>
</tr>
</tbody>
</table>

Table 3: Z Channel Characteristic

From Table 3, we could easily find that \(Q = \begin{pmatrix} 1 & 0 \\ p & 1 - p \end{pmatrix} \).

3.3 Weakly Symmetric Channels

1. All columns of \(Q \) have the same sum

 If \(X \) is uniform distributed \(p(x) = |X|^{-1} \), then \(Y \) is also uniform.

 \[
 p(y) = \sum_{x \in X} p(y|x)p(x) = |X|^{-1}|X||Y|^{-1} = |Y|^{-1}
 \]

2. Rows of \(Q \) are permutation of each other

 Entropy of each row will be the same.

 \[
 H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x) = H(Q_1)
 \]
3.4 Symmetric Channel

1. Rows of \(Q \) are permutations of each other
2. Columns of \(Q \) are permutations of each other

Side note: Symmetry \(\implies \) Weakly symmetric

Example \(Q_1 = \begin{pmatrix} 1/3 & 1/6 & 1/2 \\ 1/2 & 1/3 & 1/6 \end{pmatrix} \), \(Q_2 = \begin{pmatrix} 0.3 & 0.3 & 0.4 \\ 0.3 & 0.4 & 0.3 \\ 0.4 & 0.3 & 0.3 \end{pmatrix} \). Are \(Q_1 \) and \(Q_2 \) weakly symmetric?

Answer: \(Q_1 \) is not a weakly symmetric channel because not all columns of \(Q_1 \) have the same sum. \(Q_2 \) is a weakly symmetric channel because all columns of \(Q_2 \) have the same sum.

4 Channel Capacity

4.1 Capacity of Discrete Memoryless Channel

Definition 4.1 We can define the channel capacity of a discrete memoryless channel as

\[
C = \max_{p(x)} I(X; Y)
\]

- The maximum over all possible input distribution of \(p(x) \).
- \(\exists \) only one maximum \(I(X; Y) \) since \(I(X; Y) \) is concave in \(p(x) \) given \(p(y|x) \).
- We want to find \(p(x) \) that maximize \(I(X; Y) \).
- Limit on \(C \): \(0 \leq C \leq \min(H(X), H(Y)) \leq \min(\log |X|, \log |Y|) \).

4.2 Capacity of \(n \) Uses of Channel

Definition 4.2 We can define the channel capacity of \(n \) uses channel as:

\[
C^n = \frac{1}{n} \max_{p(x)} I(X_1, X_2, X_3, \ldots, X_n; Y_1, Y_2, Y_3, \ldots, Y_n)
\]

4.3 Mutual Information

Example From Figure 6 and 7, they show the Binary Symmetric Channel with an input random variable \(x \), and \(x \) follows Bernoulli distribution. \(y \) represents for the output of this channel. In this case, we want to find the mutual information \(I(X; Y) \).
\[I(X;Y) = H(Y) - H(Y|X) \]

From Figure 7 and Figure 8, we can see the probability of \(Y = 0 \) and \(Y = 1 \)

\[
\begin{align*}
P(Y = 0) &= pf + (1 - p)(1 - f) \\
P(Y = 1) &= (1 - p)f + p(1 - f)
\end{align*}
\]

\[
\Rightarrow H(Y) = H(1 + 2pf - p - f) = H(f + p - 2pf)
\]
\[
\Rightarrow H(Y | X) = H(Y | X = 0)P(X = 0) + H(Y | X = 1)P(X = 1)
\]
\[
\Rightarrow (1 - p)H(f) + H(f)p = H(f) = I(X;Y)
\]

4.4 Mutual Information is Concave In \(p(x) \)

Mutual information is concaved in \(p(x) \) for a fixed \(p(y|x) \).
Proof Let U and V be two random variables. We are trying to prove u and v respectively. Define:

$$X = \begin{cases} U & Z = 1, \text{ with probability } \lambda \\ V & Z = 0, \text{ with probability } 1 - \lambda \end{cases}$$

Here, z acts as a switch with probability λ to be 1 and with probability $1 - \lambda$ to be 0 as shown in Figure 9.

![Figure 9: z Acting as a Switch](image)

Thus, it is easy to see that

$$p(x) = \lambda u + (1 - \lambda)v$$

Figure 10 is a visual example of a concave function with random variable U and V. We will show that,

$$I(X; Y) = I(\lambda u + (1 - \lambda)v; Y) \geq I(U; Y) + (1 - \lambda)I(V; Y)$$

$$I(X, Z; Y) = I(X; Y) + I(Z; Y|X) = I(Z; Y) + I(X; Y|Z)$$

(1)

(2)
(Note: equation (1) represents using conditional mutual information on X, and (2) represents using conditional mutual information on Z.)

But,

$$I(Z; Y|X) = H(Y|X) - H(Y|Z, X) = H(Y|X) - H(Y|X) = 0 \quad (3)$$

From (1), (2), (3), we have

$$I(X; Y) \geq I(X; Y|Z) = I(X; Y|Z = 1)P(Z = 1) + I(X; Y|Z = 0)P(Z = 0)$$

$$\geq \lambda I(U; Y) + (1 - \lambda)I(V; Y)$$

So we proved that,

$$I(X; Y) \geq \lambda I(U; Y) + (1 - \lambda)I(V; Y)$$