Problem Statement: Write a C++ program that continues to ask the user for \(n \) test scores. These test scores should range from 0 to 100, and your program needs to check that the scores supplied are valid numbers before moving forward. This may include making sure the user doesn’t enter a letter or string of letters.

- Ask the user for the number of test scores he/she wants to enter.
- Repeatedly, ask the user for that number of test scores.
 - For each test score received, check that the test score is a number and it is between 0-100.
 - Print an error message if the number is not in this range, and re-prompt the user for another number.
- After receiving good test scores, then calculate the average and output it to the screen.

Understanding the Problem:
This problem is asking me to read an unsigned whole number value, \(n \), from the user, and then read \(n \) unsigned real numbers, which represent test scores, from the user. These scores need to be between 0 and 100, as well as a valid real number. If the user doesn’t enter a valid number or a number in the range, then an error message is printed, and the user is prompted to enter a new number without taking away from the \(n \) valid numbers the user is entering. After the user enters \(n \) valid real numbers in the range of 0-100, then the average is calculated and printed to the screen.

I am assuming the number of tests is an unsigned whole number.
I am assuming the test scores can be unsigned real numbers, instead of just integers.
I am assuming that errors in the user input does not count against the \(n \) numbers to enter.

Devising a Plan/Design:

1. Ask for \(n \)
2. If \(n \) is not integer or \(n \) is not in the range of 0-100, print error and do not continue.
3. Read test score.
4. If test score is between 0 and 100, print error and do not continue.
5. Add test score to totals.
6. If test score equals \(n \), calculate average by dividing total by \(n \), and print average.
7. Add test score to totals and read another test score.
Declare n
Prompt user for n
Read n from user
While (n < 0) or (n not an int)
 Print error msg.
 Prompt user for n
 Read n

For n test scores
 Prompt user for score
 Read score
 While (score ≥ 100) or (score < 0)
 Print error msg.
 Prompt user for score
 Read score
 Add score to totalscores
 Increment test scores read

Calculate average by totalscores/n
Print test average

Testing:

<table>
<thead>
<tr>
<th>Value</th>
<th>Expected</th>
<th>Actual meet expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 0</td>
<td>Nothing, just exit</td>
<td>Yes</td>
</tr>
<tr>
<td>n = -1</td>
<td>Error message and re-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>prompt the user for a good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>n = 1.5</td>
<td>Error message and re-prompt the user for a good n value</td>
<td>Yes</td>
</tr>
<tr>
<td>n = 1</td>
<td>Prompt user for 1 test score</td>
<td>yes</td>
</tr>
<tr>
<td>n = 5</td>
<td>Prompt user for 5 tests</td>
<td>yes</td>
</tr>
<tr>
<td>test score = -1</td>
<td>Error message and re-prompt the user for a good test value. This should not count as one of the n tests.</td>
<td>yes</td>
</tr>
<tr>
<td>test score = 100.5</td>
<td>Error message and re-prompt the user for a good test value. This should not count as one of the n tests.</td>
<td>Yes</td>
</tr>
<tr>
<td>test score = 0</td>
<td>Continue to prompt for another test score.</td>
<td>Yes</td>
</tr>
<tr>
<td>n = 1, test score = 100</td>
<td>Average should be 100</td>
<td>yes</td>
</tr>
<tr>
<td>n = 1, test score = 100.5, test score = 0</td>
<td>Error message for test score, re-prompt for a new test score, and only use valid n tests in average. Average should be 0</td>
<td>yes</td>
</tr>
<tr>
<td>n = 3, test score = 100, test score = 0, test score = 50</td>
<td>Average should be 50</td>
<td>yes</td>
</tr>
</tbody>
</table>

Design for next assignment:
This should be just like the design and testing part done for the current problem, but you will not have data for actual testing. In addition, your design may be a rough design and not fully complete for this part.