Trees

Introduction and Applications
Goals

• Tree Terminology and Definitions
• Tree Representation
• Tree Application
Examples of Trees
Trees

• Ubiquitous – they are everywhere in CS

• Probably ranks third among the most used data structure:
 1. Arrays/Vectors
 2. Linked Lists
 3. Trees
Tree Characteristics

- A tree consists of a collection of nodes connected by directed arcs.
- A tree has a single **root** node.
 - By convention, the root node is usually drawn at the top.
- A node that points to (one or more) other nodes is the **parent** of those nodes while the nodes pointed to are the **children**.
- Every node (except the root) has exactly one parent.
- Nodes with no children are **leaf** nodes.
- Nodes with children are **interior** nodes.
Tree Characteristics

- **Directed Arcs**
- **Nodes**
- **Interior Nodes:** have one or more children
- **Leaf Nodes:** have no children
Tree Characteristics

Subtree rooted at node d

Descendants of node d

Siblings
Tree Characteristics

- Nodes that have the same parent are *siblings*.

- The *descendants* of a node consist of its children, and their children, and so on.
 - All nodes in a tree are descendants of the root node (except, of course, the root node itself).

- Any node can be considered the root of a *subtree*.

- A subtree rooted at a node consists of that node and all of its descendants.
Tree Characteristics

• There is a single, unique path from the root to any node
 – Arcs don’t join together
• A path’s length is equal to the number of arcs traversed
• A node’s height is equal to the maximum path length from that node to a leaf node:
 – A leaf node has a height of 0
 – The height of a tree is equal to the height of the root
• A node’s depth is equal to the path length from the root to that node:
 – The root node has a depth of 0
 – A tree’s depth is the maximum depth of all its leaf nodes (which, of course, is equal to the tree’s height)
Tree Characteristics

Root:
- Height = 3
- Depth = 0

Depth = 3:
- Path length to node from the root

Height = 2:
- Path length to furthest leaf
Tree Characteristics (cont.)

- Nodes D and E are children of node B.
- Node B is the parent of nodes D and E.
- Nodes B, D, and E are descendents of node A (as are all other nodes in the tree...except A).
- E is an interior node.
- F is a leaf node.

Nodes:
- D
- E
- F
- B
- C

Tree:
- Root (depth = 0, height = 4)
- Subtree rooted at node C
- Leaf node (depth = 4, height = 0)
Tree Characteristics (cont.)

Are these trees?

Yes

No

No
Binary Tree

- Nodes have no more than two children
- Children are generally referred to as “left” and “right”
Full *Binary* Tree

• Every node is either a leaf or has exactly 2 children
Perfect Full Binary Tree

Height of \(h \) will have \(2^h \) leaves

Height of \(h \) will have \(2^{h+1} - 1 \) nodes

Perfect & Full
All leaves are at the same depth and all internal nodes have 2 children
Complete Binary Tree

• Complete Binary Tree:
 full except for the bottom level which is filled from left to right
Not a Complete Binary Tree
Binary Tree Application: Animal Game

• Purpose: computer guesses an animal that you (the player) is thinking of using a sequence of questions
 – Internal nodes contain yes/no questions
 – Leaf nodes are animals (or answers!)

• How do we build it?
Binary Tree Application: Animal Game

- **Cat**
 - **Swim?**
 - Yes: **Fish**
 - No: **Cat**
 - **Fly?**
 - Yes: **Bird**
 - No: **Cat**
Initially, tree contains a single animal (e.g., a “cat”) stored in the root node

Guessing....

1. Start at root.

2. If internal node \rightarrow ask yes/no question
 - Yes \rightarrow go to left child and repeat step 2
 - No \rightarrow go to right child and repeat step 2

3. If leaf node \rightarrow guess “I know. Is it a ...”:
 - If right \rightarrow done
 - If wrong \rightarrow “learn” new animal by asking for a yes/no question that distinguishes the new animal from the guess
How many things can you distinguish between with q questions?

- If you can ask at most q questions, the number of possible answers we can distinguish between, n, is the number of leaves in a full binary tree with height at most q, which is at most 2^q.

- Taking logs on both sides: $\log(n) = \log(2^q)$

- $\log(n) = q$: for n outcomes, we need q questions.

- *For 1,048,576 outcomes we need 20 questions*.
Binary Search Trees
Concepts
Binary Search Tree

- Binary search trees are binary trees where every node’s value is:

 - *Greater than* all its descendents in the *left subtree*

 - *Less than or equal* to all its descendents in the *right subtree*
Intuition
BST: Contains Example

Object to find → Agnes

Abner
 └── Abigail
 └── Adam

Alex
 └── Adela
 └── Agnes

Angela
 └── Alice
 └── Allen
 └── Audrey
 └── Arthur
BST: Add

- Do the same type of traversal from root to leaf
- When you find a null value, create a new node (children of leaves are NULL)
BST: Add Example

Before first call to `add`

```
Object to add → Aaron
```

```
Alex

Abner
Abigail
Aaron

Adela
Adam

Angela
Alice
Agnes
Allen

Audrey
Arthur
```

“Aaron” should be added here
BST: Add Example

After first call to **add**

- Alex
 - Abner
 - Abigail
 - Aaron
 - Adela
 - Adam
 - Angela
 - Agnes
 - Allen
 - Arthur

Next object to add → **Ariel**

“**Ariel**” should be added here
How would you remove Abigail? Audrey? Angela?
Who fills the hole?

- **Answer:** the leftmost child of the right subtree (smallest element in right subtree)
- Try this on a few values
- Alternatively: The rightmost child of the left subtree
Intuition…Remove 50
BST: Remove Example

Before call to `remove`

```
Abigail
  Adam

Abner

Adela
  Agnes

Alex

Alice
  Allen

Angela

Audrey

Arthur
```

Replace with: `leftmost(right)`

Element to remove
After call to remove
Special Case

• What if you don’t have a right child?
 • Try removing “Audrey”
 – Simply return left child
Complexity Analysis (contains)

• If tree is reasonably full (well balanced), searching for an element is $O(\log n)$. Why?
 – you’re dividing in half at each step: $O(\log n)$

• Alternatively, we are running down a path from root to leaf
 – We can prove by induction that in a complete tree (which is reasonably full), the path from root to leaf is bounded by $\text{floor}(\log n)$, so $O(\log n)$
• We’ve shown all operations (add, contains, remove) to be proportional to the length of a path, rather than the number of elements in the tree.

• We’ve also said that in a reasonably full tree, this path is bounded by: \(\text{floor}(\log_2 n) \)

• This is faster than our previous implementations!
Comparison

- **Average Case Execution Times**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Dynamic Array</th>
<th>Linked List</th>
<th>Ordered Array</th>
<th>Binary Search Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>O(1⁺)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Contains</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Remove</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
</tbody>
</table>
Your Turn

• Worksheet28_BSTPractice
Binary Search Trees II
Implementation
Goals

• BST Representation
• Operations
• Functional-style operations
Binary Search Trees

```c
struct BSTree {
    struct Node *root;
    int cnt;
};

void addBSTree(struct BSTree *tree, TYPE val);
int containsBSTree(struct BSTree *tree, TYPE val);
void removeBSTree(struct BSTree *tree, TYPE val);

struct Node {
    TYPE val;
    struct Node *left;
    struct Node *right;
};
```
A useful trick: **Recursive helper routine that returns the tree with the value inserted**

```java
Node addNode(Node current, TYPE value)
    if current is null then return new Node with value
    otherwise if value < Node.value
        left child = addNode(left child, value)
    else
        right child = addNode(right child, value)
    return current node
```
Visual Example

Add “L”

Add (k,"L")

Add(q,"L")

Add(m, “L”)
void add(struct BSTree *tree, TYPE val) {
 tree->root = _addNode(tree->root, val);
 tree->cnt++;
}
Recursive Helper – functional flavor

```c
struct Node * _addNode(struct Node * cur, TYPE val) {
    struct Node * newnode;
    if (cur == NULL) {
        /* insert: create Node with val */
        return /* the created node */
    }
    if (val < cur->val)
        cur->left = _addNode(cur->left, val);
    else
        cur->right = _addNode(cur->right, val);
    return cur;
}
```
Iterative (non-recursive) Version

```c
void add(struct BSTree *tree, TYPE val) {
    struct Node *cur = tree->root;
    if (tree->root == NULL) {  // tree is empty
        tree->root == /* new Node with val */ ;
    }
    while (cur != null) {
        if (LT(val,cur->val))
            if (cur->left == NULL) {
                cur->left = /* new Node with val */ ;
                return;
            } else cur = cur->left;
        else if (cur->right == NULL) {
            cur->right = /* new Node with val */ ;
            return;
        } else cur = cur->right;
    }
}
```
How would you remove Abigail? Audrey? Angela?
Who fills the hole?

• Answer: the leftmost child of the right subtree (smallest element in right subtree)

• Useful to have a couple of private inner routines:
Before call to remove
After call to \textit{remove}
Who fills the hole?

• Answer: the leftmost child of the right subtree (smallest element in right subtree)

• Useful to have a couple of private inner routines:

```c
TYPE _leftmost(struct Node *cur) {
    ...
    /* Return value of leftmost child of current node. */
}
```

```c
struct Node *_removeLeftmost(struct Node *cur) {
    ...
    /* Return tree with leftmost child removed. */
}
```
Node removeNode(Node current, TYPE value)
 if value = current.value
 if right child is null
 return left child
 else
 replace value with value in leftmost child of right subtree
 set right child to result of removeLeftmost(right)
 else if value < current.value
 left child = removeNode(left child, value)
 else right child = removeNode(right child, value)
return current node
Your Turn

- Complete the BST implementation in Worksheet #29
Space Requirements

• Does the recursive version require more or less space than an iterative version?

• Time overhead for recursive version?