CS 261 – Data Structures

Big-Oh Analysis: A Review
• How can we characterize the runtime or space usage of an algorithm?

• We want a method that:
 – doesn’t depend upon hardware used (e.g., PC, Mac, etc.)
 – the clock speed of your processor
 – what compiler you use
 – even what language you write in
Big-Oh: **Purpose**

• “Big-Oh” notation is used to provide time and space characterizations.

• For example, you might see the statement:
 – “Algorithm A runs in time $O(n)$”
 – Read $O(n)$ as “Big-Oh of n” or just “Oh of n”

• **Purpose of a big-Oh characterization:**
 Describes how execution time (or space usage) of an algorithm changes relative to a change in the input size
Algorithmic Analysis

- Suppose that algorithm A processes n data elements in time T.

- Algorithmic analysis attempts to estimate how T is impacted by changes in n. In other words, T is a function of n when we use A.

- If T linearly increases with n, then we say that A runs in $O(n)$ time
A Simple Example

• Consider summing an array of n integers.

```java
sum = 0;
for (i = 0; i < n; i++)
    sum += array[i];
return sum;
```

• Total running time: $c_1 + c_2 n + c_3$
 – But the constants c_1, c_2, c_3 depend on hardware, compiler, etc.

• What is the big-Oh runtime? (big-Oh ignores factors)

 $O(n)$ also known as linear time
A Simple Example

• Consider summing an array of n integers.

```java
sum = 0;
for (i = 0; i < n; i++)
    sum += array[i];
return sum;
```

• Suppose to sum 10,000 elements takes 32 ms.
• How long to sum 20,000 elements?
• If the size doubles, the execution time doubles
• Consider the BubbleSort algorithm.
 – Let n be the size of the input list to be sorted
 – Runtime is $O(n^2)$, also known as quadratic time

• Suppose size doubles, what happens to execution time?

• It goes up by a factor of 4. Why?
The Calculation

Remember $O(n^2)$ means that runtime is proportional to n^2.

So, the ratio of the big-Oh sizes should equal the ratio of the execution times

\[
\frac{n_1^2}{n_2^2} = \frac{t_1}{t_2}
\]

t_i is time to run size n_i input

So if $n_2 = 2n_1$ (that is, double input size)

\[
\frac{n_1^2}{(2n_1)^2} = \frac{t_1}{t_2}
\]

then solve for t_2
A More Complex Problem

• Widgets Inc uses a merge sort algorithm to sort their inventory of widgets

• If it takes 66 milliseconds to sort 4096 widgets, then approx. how long will it take to sort 1,048,576 widgets?

(Note: merge sort is $O(n \log n)$, 4096 is 2^{12}, and 1,048,576 is 2^{20}, and)
A More Complex Problem (cont.)

Setting up the formula:

\[
\frac{n_1 \log n_1}{n_2 \log n_2} = \frac{t_1}{t_2}
\]

\[
\frac{2^{12} \log 2^{12}}{2^{20} \log 2^{20}} = \frac{66 \text{ ms}}{t_2}
\]

Solve for \(x\) (remember \(\log 2^y\) is just \(y\))
Growth Functions

- We’ve abstracted run time as a characterization by these functions that describe the rate of growth in time as \(N \) grows.

![Graph showing growth functions]

- \(O(1) \)
- \(O(\log(N)) \)
- \(O(\sqrt{N}) \)
- \(O(N) \)
- \(O(N^2) \)
- \(O(N^3) \)
Determining Big Oh: **Simple Loops**

For simple loops, ask yourself how many times loop executes as a function of input size:

- Iterations dependent on a variable \(n \)
- Constant operations within loop

```c
double minimum(double data[], int n) {
    // Pre: values has at least one element.
    // Post: returns the smallest value in collection.
    int i;
    double min = data[0];
    for(i = 1; i < n; i++)
        if(data[i] < min) min = data[i];
    return min;
}
```

\[O(n) \]
What is the Big-Oh?

for(s = 0; s < N; s++)
 sum = sum + 1;

for(i = 0; i < N; i++)
 for(j =0; j < N; j++)
 printf(...)

Total: $O(n) + O(n^2) = O(n + n^2)$

But for large values of n, n^2 dominates n so:

$O(n + n^2) = O(n^2)$
Summation and the Dominant Component

- A method’s running time is sum of time needed to execute sequence of statements, loops, etc. within method.
- For algorithmic analysis, the largest component dominates (and constant multipliers are ignored).
 - Function $f(n)$ dominates $g(n)$ if there exists a constant value n_0 such that for all values of $n > n_0$, $f(n) > g(n)$

Example: analysis of a given method shows its execution time as $8n + 3n^2 + 23$

Don’t write $O(8n + 3n^2 + 23)$ or even $O(n + n^2 + 1)$, but just $O(n^2)$.
Constant factors and domination

But ….. suppose we have two algorithms with exact runtimes of:

<table>
<thead>
<tr>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000,000 \cdot n$</td>
<td>$2 \cdot n^2$</td>
</tr>
</tbody>
</table>

Is it reasonable to say that runtime of Algorithm 2 dominates (is worse than) Algorithm 1?

No for small values of n

Yes for very large values of n

$1,000,000 \cdot n + 2 \cdot n^2$ behaves like n^2 for large n
double findValue(double data[], double value, int n) {
 int i = 0;
 while (i < n) {
 if (data[i] == value)
 return 1;
 i++;
 }
 return 0
}

Worst Case: ??? O(n)

Best Case: ??? O(1)

Average Case: ??? Depends on input distribution.
Benchmarking

• Algorithmic analysis is the first and best way, but not the final word

• What if two algorithms are both of the same complexity?

• Example: bubble sort and insertion sort are both $O(n^2)$
 – So, which one is the “faster” algorithm?
 – Benchmarking: run both algorithms on the same machine
 – Often indicates the constant multipliers and other “ignored” components
 – Still, different implementations of the same algorithm often exhibit different execution times – due to changes in the constant multiplier or other factors (such as adding an early exit to bubble sort)
Let's Practice: What is the O(??)

- You are given an array of n numbers that are in sorted order.
- Your program must find whether or not the number v is in the array.
- Can easily do this in $O(n)$ using linear search.
- Can we do better?

- **Binary search**: recursively split array in half and discard half that cannot have the value v
- What is big-Oh?

 $O(\log(n))$ since can only split in half $\log(n)$ times.
Let’s Practice: What is the $O(\ ?\ ?\)$

```c
int firstHalfOccurrences (double data[], double testValue, n) {
    int count = 0;
    for (int i = 0; i < (n / 2); i++) {
        if (data[i] == testValue)
            count++;
    }
    return count;
}
```

<table>
<thead>
<tr>
<th>Worst Case</th>
<th>Best Case</th>
<th>Average Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
$O(\sqrt{n})$ in terms of n (worst case)

```c
int isPrime (int n) {
    for (int i = 2; i * i <= n; i++) {
        if (0 == n % i) return 0;
    }
    return 1; /* 1 is true */
}
```

$O(\sqrt{n})$
void matrixMult (int a[][], int b[][], int c[][], n) {

 // a and b are square nxn matrices
 // after running function c = a*b

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++) {
 c[i][j] = 0;
 for (k = 0; k < n; k++)
 c[i][j] += a[i][k] * b[k][j];
 }

}
void printSums (n) {
 int i, j;
 for (i = 1; i <= n; i++) {
 sum = 0;
 for (j = 1; j <= i; j++) {
 sum += j;
 printf("%d\n", sum);
 }
 }
}

\[
1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} = O(n^2)
\]
You are responsible for the following:

- Worksheet 9: Summing Execution Times
- Worksheet 10: Wall Clock Time Estimation