CS 321 Activity 2

1. Consider the CNF grammar \(G = (V,T,S,P) \) where

\[
V = \{ S, A, B, C, D \}, \quad T = \{ a, b, c \}, \quad S = S \text{ and } P \text{ is given below.}
\]

\[
\begin{align*}
S & \rightarrow AB | AC \\
A & \rightarrow AC | AB | a \\
B & \rightarrow BB | BC | b \\
C & \rightarrow AC | CC | c | b
\end{align*}
\]

Use the CKY to determine if the strings \(w_1 = acbb \) and \(w_2 = bbca \) are in the language \(L(G) \). If the string is in \(L(G) \) construct the parse tree.
CS 321 Activity 2

2. Write a context-free grammar for the following language.

\[L = \{ a^m b^{m^2 n} : m \geq 0, n > 0 \} \cup \{ b^n a^n : n > 0 \} \]
3. Consider $L = \{ a^p b^{2n} c^p \mid p < n, \ n > 0 \}$. Prove L is not a context-free language.
4. Consider \(L = \{ a^n b^p c^q \mid n + q = p, p > 0, q > 0, n > 0, \text{ and } n \text{ is even} \} \), \(\Sigma = \{a, b, c\} \).

(a) List four strings in \(L \).

(b) Verbally describe and give the formal definition of an NPDA \(M \) that accepts \(L \) by final state. Assume \(Z \) is on the top of the stack when \(M \) starts.

You can use a transition graph to represent the transition function. Identify the start state by an arrow and final states by double circles. The format of the labels on the edges should be: \(a, b; x \) where \(a \) is an input character, \(b \) is the symbol popped off the top of the stack and \(x \) is the symbol(s) pushed onto the stack.
5. Convert the following CFG to CNF

\[
S \rightarrow ABa \mid AC \\
A \rightarrow Ab \mid a \\
B \rightarrow b \mid C \mid \lambda \\
C \rightarrow aa \mid AA
\]

6. Consider the following languages. Write “REG” if it is regular, “CFL:” if it is a CFL and not regular, and write “NOT” if it is not a CFL.

(a) \(L = \{a^nb^{2m}c^{3n} \mid n > 0\}\) \(\text{REG}\)

(b) \(L = \{a^nb^{2m} \mid m, n > 0\}\) \(\text{CFL}\)

(c) \(L = \{b^ma^nc^p \mid m > n+p, n > 0, p > 0\}\) \(\text{CFL}\)

(d) \(L = \{b^pc^n \mid n > 2p, n > 0, 0 < p < 10\}\) \(\text{CFL}\)

(e) \(L = \{w \in \{a, b, c\}^* \mid n_a(w) > n_b(w)\}\) \(\text{NOT}\)
7. Consider the context-free grammar

\[
S \rightarrow aS \mid aaC \mid aB \\
B \rightarrow b \mid ab \\
C \rightarrow aB \mid b
\]

(a) Show that the grammar is ambiguous

(b) Find an equivalent unambiguous grammar.