The assignment is to be turned in before Midnight (by 11:59pm) on February 13, 2017. You should turn in the solutions to this assignment as a pdf file through the TEACH website. The solutions should be produced using editing software programs, such as LaTeX or Word, otherwise they will not be graded.

1: Serializability and 2PL (4 points)

Consider the following classes of schedules: serializable and 2PL. For each of the following schedules, state which of the preceding classes it belongs to. If you cannot decide whether a schedule belongs in a certain class based on the listed actions, explain briefly.

The actions are listed in the order they are scheduled and prefixed with the transaction name. If a commit or abort is not shown, the schedule is incomplete; assume that abort or commit must follow all the listed actions.

1. T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y)
2. T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)
3. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit
4. T1:R(X), T2:W(X), T1:W(X), T3:R(X), T1:Commit, T2:Commit, T3:Commit

Solution:

1. The serialization graph is T1 → T3 → T2. Since the serialization graph does not have any cycle, the schedule is serializable. It is also 2PL. One possible locking sequence for this schedule that is compatible with the 2PL rule is as follows. In the following schedule, SLock, SRelease, XLock, and XRelase denote acquiring a shared lock, releasing a shared lock, acquiring an exclusive lock, and releasing an exclusive lock, respectively.

T1:SLock(X), T1:SLock(Y), T1:R(X), T1:SRelease(X), T2:SLock(Y), T2:R(Y), T3:SLock(X), T3:W(X), T3:XRelease(X), T2:SLock(X), T2:R(X), T2:SRelease(X), T2:SRelease(Y), T1:R(Y), T1:SRelease(Y)

2. The serialization graph is:

Since the serialization graph has a cycle between T2 and T3, the schedule is not serializable. Because the schedule is not serializable, it is not a 2PL schedule.

3. The serialization graph is:

Because the serialization graph has a cycle between T1 and T2, the schedule is not serializable. Thus, it is not a 2PL schedule.
4. The serialization graph is:

```
    T1  T2  T3
```

Because the serialization graph has a cycle between T1 and T2, the schedule is **not** serializable. Hence, it is not 2PL.

2: Multi-granularity Locking (2 point)

Consider a database DB with relations R1 and R2. The relation R1 contains tuples t1 and t2 and the relation R2 contains tuples t3, t4, and t5. Assume that the database DB, relations, and tuples form a hierarchy of lockable database elements. Explain the sequence of lock requests and the response of the locking scheduler to the following schedule. You may assume all lock requests occur just before they are needed, and all unlocks occur at the end of the transaction, i.e., EOT.

- T1:R(t1), T2:W(t2), T2:R(t3), T1:W(t4)

Solution: At the first step, T1 puts a IS lock on the DB and on R1, and an S lock on t1. At step 2, T2 puts an IX lock on the DB and on R1, both of which are compatible with the IS locks already there. T2 also puts an X lock on t2. At step 3, T2 puts an IS lock on R2 and an S lock on t3, then releases its locks. T2 does require to get an IS lock on the DB as it already has a IX lock on it, which is stronger. At step 4, T1 upgrades its IS lock on the DB and R2 and an X lock on t4, then releases its locks.